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Synthetic Biology is an engineering discipline where parts of DNA sequences are composed into novel, com-
plex systems that execute a desired biological function. Functioning and well-behaving biological systems
adhere to a certain set of biological “rules”. Data exchange standards and Bio-Design Automation (BDA)
tools support the organization of part libraries and the exploration of rule-compliant compositions. In this
work, we formally define a design specification language, enabling the integration of biological rules into the
Synthetic Biology engineering process. The supported rules are divided into five categories: Counting, Pair-
ing, Positioning, Orientation, and Interactions. We formally define the semantics of each rule, characterize
the language’s expressive power, and perform a case study in that we iteratively design a genetic Priority
Encoder circuit following two alternative paradigms—rule-based and template-driven. Ultimately, we touch
a method to approximate the complexity and time to computationally enumerate all rule-compliant designs.
Our specification language may or may not be expressive enough to capture all designs that a Synthetic
Biologist might want to describe, or the complexity one might find through experiments. However, computa-
tional support for the acquisition, specification, management, and application of biological rules is inevitable
to understand the functioning of biology.
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1. INTRODUCTION

The practice of principled engineering of biological systems with new desired behaviors
is called Synthetic Biology [Andrianantoandro et al. 2006]. Engineers use sequences
of DNA and RNA nucleotides as primary building blocks for synthetic bioengineering.
Therefore, engineers adopt a programming strategy that is different from that used
in programming computers, where the effect of each instruction type on the state of
the computation is well defined, context-independent, and known. If the organism-
wide effect of every nucleotide was completely predictable, then engineers would be
able to write synthetic genetic programs with a rich well defined and well-understood
instruction set, which would lead to more robust genetic programs. At the current
time, however, we do not have such a complete mapping of sequence to function [Lucks
et al. 2008]. As a result, synthetic programs whose behavior cannot be completely
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and reliably predicted are executed in an uncertain operating context that often causes
interference, disruption, and in many cases, malfunction or termination of the synthetic
program [Cardinale and Arkin 2012].

Engineers compose new genetic programs from naturally occurring program frag-
ments that are known to work in the operating context, and are tweaked or tuned to
work in a new context. These fragments are known as genetic “parts” analogous to the
mechanical and electronic parts used to assemble widgets and devices. Analogous to
mechanical and electronic engineering, and in a more compelling way due to the combi-
natorial complexity inherent in nucleotide sequences, these genetic parts are known to
function as expected only in a specific operating context captured by a set of conditions
or “rules” [Endy 2005; Purnick and Weiss 2009].

Because of the gap in the knowledge of how DNA describes functionality, rules must
be reverse engineered via a large number of characterization experiments and may
only become known over a long period of time. It becomes important to represent
parts of DNA sequences accompanied with rules of use and composition. Apart from
reverse engineering, rules can also complement forward engineering. When composing
and reusing parts into complex systems, the rules associated with the parts can
be composed into the rules of the new system’s design. The combined set of rules
capture the degrees of freedom of a part’s use in a composition, and are important
when a system’s design is being composed into an even larger system. Then, the
degrees of freedom may either grow or shrink depending on the rules of the composed
systems.

When recursively composing parts into complex systems, the design space of possible
compositions grows rapidly with the size of the desired design. Exploring a combinato-
rial design space manually is at best tedious and error-prone and at worst impossible,
resulting mostly in nonfunctional, noisy, and unreliable systems and a slow rate of
understanding the function of the biological system under design. Bio-Design Automa-
tion (BDA) [Densmore and Hassoun 2012] tools are starting to address this problem
and data exchange standards, such as the Synthetic Biology Open Language (SBOL)
[Galdzicki et al. 2014], enable to share and communicate the design of synthetic bio-
logical systems, their composed parts, and performance characteristics. BDA can lead
to further advancements by having large design spaces systematically explored by
sophisticated algorithms that integrate “rules” [Densmore et al. 2010].

The ability to engineer BDA tools that enable design space explorations depends on
the design specification language. Simple specification languages may have tractable
algorithms but may be insufficiently expressive to capture biological design rules
whereas powerful languages may lack the algorithms needed for design space ex-
ploration. The development of a rule-based design specification language is guided by
three requirements: the expressivity required by the inherent complexity of biologi-
cal rules, the expressivity required by the specification needs of the end-user, and the
availability of efficient algorithms for the operations of interest.

A specification language must at minimum enable the representation of parts with
their attributes as the basic objects of interest, and the relationships among parts
based on their attributes, along with the ability to combine specifications using stan-
dard logical operators, such as A (and), v (or), and — (not). While individual genetic
designs are composed specifications of fully defined parts, the rules of part and de-
sign compositions may be conditional, relative, or incomplete of is restricted, allowed,
or ensured compositions. Thus, a rule-based design specification language must allow
expressing unknown parts, attribute values, and indices. These requirements can be
satisfied by a specification language with part and attribute predicates or functions,
logical operators, and the V (universal) and 3 (existential) quantifiers.
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Contributions

The first contribution of this work is the formal definition of a rule-based language
for specifying Synthetic Biology designs. The supported rules are grouped into the fol-
lowing types: Counting, Pairing, Positioning, Orientation, and Interaction. We formally
define the semantic of each rule using First-Order Logic (FOL) and Boolean functions,
and characterize the expressive power of the specification language. Efficient algo-
rithms then enable (1) to enumerate all designs that comply with a specification, and
(2) to verify if a design is compliant with a specification.

The second contribution is a demonstration of our language’s applicability on a case
study. We iteratively design a genetic Priority Encoder circuit comprised of five geneti-
cally wired transcriptional NOR gates [Tamsir et al. 2011]. To perform the case study,
we implemented all constraints and an efficient approach to enumerate all valid de-
signs in miniEugene, a member of the Eugene ecosystem [Bilitchenko et al. 2011]. This
case study illustrates two different paradigms of utilizing our specification language:
rule-based and template-driven. Implementation details are, however, out of the scope
of this article. Both paradigms are then discussed, based on several criteria that we
have discovered while performing the case study.

As a third contribution, we touch a methodology to approximate the number of all
designs that comply with a specification. The benefits lie in (1) the evaluation and
verification of a large number of designs without laborious manual work and (2) the
production of designs that might have been overlooked by a human designer acting
unaided.

In this article, we use the terminology of Synthetic Biology, such as promoter, ribo-
some binding site (RBS), coding sequences, or terminators. We assume that the reader
of this manuscript is familiar with those concepts. For a more detailed explanation, we
refer to Densmore and Hassoun [2012].

2. A FORMAL SPECIFICATION LANGUAGE OF SYNTHETIC BIOLOGY
DESIGN CONSTRAINTS

In this section, we formally define a language for the specification of synthetic biology
designs. The language allows the assertion of Boolean functions (also called predicates)
and variables using FOL.

Let A = {ay, ..., ar} be a set of Boolean functions o : N — {T', F'}. A finite design of
length N is a sequence of k-tuples ((a1(1), ..., ax(1), ..., (@1 (N), ..., ap(N))).

For example, consider A = {lacI, P1, Pirc2, R1, GF Pmut3, Promoter, T erminator,
Reporter, Repressor, forward, reverse}. Then, the predicate Promoter(1l) asserts all
designs that have a Promoter in their first position. For design verification purposes, a
given design with a promoter at the first position, will have the Promoter(1) predicate
evaluate to true.

Predicates can be negated using the logical — (not) operator, as well as combined using
the logical operators A (and), and Vv (or). Any well-formed combination of the logical
operators, predicates, and variables, we call a specification. Resultantly, a design space
is the set of all designs that satisfy all constraints of a specification.

Our formal specification language focuses on the arrangement, the number of ap-
pearances, and the orientation of genetic elements in synthetic biology designs, as well
as their relationships, such as regulatory interactions. Therefore, we restrict the set
of predicates A to contain only predicates that allow the assertion of part names, part
types, and the orientation of part. We restrict the FOL V (universal) and 3 (existential)
quantifiers to only being used over the design indices i.
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Fig. 1. The genetic Toggle-Switch design.

Table I. Primitive Counting Rule

Rule Description Formalization Examples
o MORETHAN n o must appear more n<la| <N Promoter MORETHAN 1
than n times and not GFPmut3 MORETHAN O
more than N times.

Table II. Composite Counting Rules

Rule Description Formalization Examples
CONTAINS « «a must appear at least | 0 < |o| < N CONTAINS Promoter
once CONTAINS lacIl
o EXACTLY n o must appear exactly | |a| ==n Promoter EXACTLY 2
n times. 0<n<N GFPmut3 EXACTLY 1

In Figure 1, we graphically exemplify an instance of A and the predicates using the
genetic Toggle-Switch design [Gardner et al. 2000]. In the following, any « and 8 refer
to any «o; € A, and n ranges over non-negative integers (n € N). The provided examples
refer to the genetic Toggle-Switch design in Figure 1.

2.1. Counting Rules

Counting rules constrain the number of occurrences of genetic elements in a synthetic
biology design. A genetic Toggle-Switch, for example, consists of two different repressor
genes that control two promoters. Both promoters drive the expression of the down-
stream repressor genes. Furthermore, there is one reporter gene which is expressed if
the Toggle-Switch is in the high state. In Table I, we explain, formalize, and exemplify
the primitive Counting rule of our specification language. Since our specification lan-
guage focuses on finite designs of length N, we constrain the MORETHAN rule’s operand
n to range over the interval [0, N] .

In Table II, we explain, formalize, and exemplify composite Counting rules. The
CONTAINS « rule ensures that o appears at least once in a design, which is equal to
the rule @ MORETHAN 0. By using the logical operators A and — the MORETHAN rule can
be composed into complex rules. The o EXACTLY n rule specifies that o occurs exactly n
times, which is equivalent to the specification: (@ MORETHAN 72— 1 A — (& MORETHAN n+1)).

2.2, Pairing Rules

By further using the logical operator Vv, the primitive and composite Counting rules
can be combined to ensure or restrict pairwise occurrences of genetic elements in a
design [Chen et al. 2012]. For example, the constraint that the Toggle-Switch design
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Table Ill. Pairing Rules

Rule Description Formalization Examples

o THEN B If o appears, then 8 | (jo|>1) = (8| =1) lacI THEN Ptrc2
must appear. P1 THEN R1

a WITH B a and B must appear. (Jal =D A(Bl=1) lacI WITH Ptrc2
R1 WITH P1

must contain two different repressor genes can be formulated as a constraint that one
repressor gene must be paired with a different repressor gene. Hence, we also introduce
so-called Pairing rules in our specification language which we explain, formalize, and
exemplify in Table III.

The semantic of the THEN rule is formally defined that an occurrence of o implies
(=) the occurrence of 8. The logical term p = ¢ is equivalent to —p Vv q. Hence, the
rule « THEN g8 is equivalent to (0« MORETHAN 1 = B MORETHAN 1), which is equivalent to
(= (e MORETHAN 1) v 8 MORETHAN 1). The wiTH rule enforces that both « and 8 must occur
and can be formalized as (CONTAINS @ A CONTAINS B). The main difference between the
THEN and the wiTH rule lies in enforcing or restricting the occurrence of 8. If using the
THEN rule, then B can appear without the occurrence of «.

2.3. Positioning Rules

The organism-wide effects of nucleotides influences and controls the predictability
and robustness of genetic programs. Therefore, the precise ordering of parts of DNA
sequences in a composition plays an integral role in the function and behavior
of biological systems. In genetic circuits regulatory effects depend on the spatial
arrangement of parts in a design [Chen et al. 2012]. In the Toggle-Switch design,
for example, each repressor gene has an upstream promoters and one immediate
upstream RBS. The translation-transcription process of the each promoter and the
RBS drives the transcription-translation process of the corresponding repressor genes.
The promoters and the RBS are translated BEFORE the translation of the repressor
genes. Positioning rules enable to constrain the arrangement of genetic parts on a
strand of DNA. The Positioning rules of our specification language are explained,
formalized, and exemplified in Table IV.

A notable similarity of all Positioning rules is that none of them constrains the
appearance of its operands « and g in a design. The rationale behind was to define a set
of primitive rules that can be logically composed into more complex rules. For example,
a rule p ALL_BEFORE g does not imply that the promoter p and the gene g appear in a
design. The logical composition CONTAINS p A CONTAINS g A p ALL_BEFORE g ensures that
p and g appear in the design and that all p’s are positioned before the first appearance
of g. Also, Positioning rules do not incorporate the orientation of its operands « and 8.

2.4. Orientation Rules

When composing genetic parts together, the orientation of the parts matters. In the
Toggle Switch, for example, the two promoters P1 and Pt¢rc2 face different orientations
to control the expression of the lacl and R1 repressor genes. Furthermore, the promot-
ers, RBSs, genes, and terminators have the same orientation. In Table V, we explain,
formalize, and exemplify the Orientation rules of our specification language.

2.5. Interaction Rules

Interaction rules specify regulatory interactions in a genetic design. We differentiate
between desired and observed interactions. Desired interactions must be statically
specified in the design of a synthetic biological systems [Cardinale and Arkin 2012]. A
system’s dynamic behavior, however, is subject to various unknowns, such as context,

ACM Journal on Emerging Technologies in Computing Systems, Vol. 11, No. 3, Article 25, Pub. date: December 2014.



25:6

Table IV. Positioning Rules

E. Oberortner et al.

Rule

Description

Formalization

Examples

STARTSWITH «

If « appears in the
design, then o« must
appear at the first
position.

(lo| = 1) = a(1)

STARTSWITH
Terminator

ENDSWITH «

If « appears in the
design, « must
appear at the last
position.

(Ja| = 1) = a(N)

ENDSWITH
Terminator

« ALL_AFTER p

All 8 components
must precede all o
components.

Vi(BG) =
Vjla(j) = @</

forward
ALL_AFTER
reverse

o SOME_AFTER 8

At least one B
component must
precede at least one
o component.

Fa@) =
3jBGRHAG <)

RBS
SOME_AFTER
R1

o ALL_BEFORE 8

All @ components
must precede all g
components.

Vi(B(i) =
Vjla(j) = (G <)

reverse
ALL_BEFORE
forward

o SOME_BEFORE 8

If « appears in the
design, then at least
one ¢ component
must precede at
least one B
component.

Fa@) =
@B AG =D))

R1
SOME_BEFORE
RBS

o ALL_NEXTTO 8

All B components
must appear
immediately before
or after all «
components.

Vi(B(i) =

jle()) = (G =i-1vj=i+1)

lacI
ALL_NEXTTO
T1T2

« SOME NEXTTO f

At least one B
component must
appear immediately
before or after at
least one «
component.

FHa@) =

3jBWDAG=i-1vj=i+1)

RBS
SOME_NEXTTO
R1

environmental signals, fluctuations, and stochastic effects [Randall

et al. 2011]. To

learn and understand those unknowns and their influences on the robustness and
stability of biological systems, the dynamically observed regulatory interactions must
be captured.

In our specification language, Interaction rules are considered as characteristics or
meta-information of a synthetic biological system’s design. Therefore, we introduce
the set P that contains all genetic parts of the design and the set R that contains
either statically specified or dynamically observed interactions. In Table VI, we ex-
plain, formalize, and exemplify the three Interaction rules and their semantics of our
specification language.

3. EXPRESSIVE POWER

Given the Counting, Pairing, Positioning, Orientation, and Interaction rules, we now
characterize the expressive power of our specification language. The expressive power
of our specification language is defined as the set of biological design spaces that
are describable with the provided rules. We compare the expressive power of the
described Counting, Pairing, Positioning, Orientation, and Interaction rules against
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Table V. Orientation Rules

257

upstream promoter p,
which has the same
orientation and there
is no intervening
terminator that has
the same orientation
as g and p.

Rule Description Formalization Examples
ALL_FORWARD « If o appears in the | >1 = ALL_FORWARD GFPMut3
design, then all Viai) = ALL_FORWARD R1
occurrences of « must forward(i)
be forward oriented.
ALL_REVERSE « If « appears in the o] >1 = ALL_REVERSE P1
design, then all Via(i) = ALL_REVERSE lacI
occurrences of o must reverse(i)
be reverse oriented.
SOME FORWARD « | If « appears in the | >1 = SOME_FORWARD
design, then at least 3 @) A forward(i) Promoter
one occurrence of «
must be forward
oriented.
SOME_REVERSE « At least one occurrence | |a|>1 = SOME_REVERSE
of o must be reverse i a(@) Areverse(i) Promoter
oriented.
ALL FORWARD All elements in the Vi forward(i) ALL_FORWARD
design must be
forward oriented.
ALL REVERSE All elements in the Vi reverse(i) ALL_REVERSE
design must be reverse
oriented.
Table VI. Interactions Rules
Rule Description Formalization Examples
g REPRESSES p The gene g and the 8, pEeP, R1 REPRESSES P1
promoter p have a (g, represses, p) € R lacI REPRESSES
represses regulatory Ptrc2
interaction.
in INDUCES p An inducer in induces/ | in,p € P, inl INDUCES P1
activates the promoter. | (in, induces,q) € R in2 INDUCES
p Ptrc2
p DRIVES g The gene g has an Vj3i pG) Ag(j) = Ptrc2 DRIVES R1

Promoter(i) A Gene(j) A
(forward(i) A forward(j) A
Ve:((—1<kA<j+1)
— (Terminator(k) —
reverse(k))))

v

(reverse(i) A reverse(j) A
Ve:((—1<RkA<j+1)
= (Terminator(k) —
forward(k))))

P1 DRIVES lacl

the expressive power of star-free languages, that is, regular languages without the
Kleene Star operator [Hopcroft et al. 2006]. In the following fact and proof, T' denotes

true and F denotes

false.

We use the following fact as starting point [McNaughton and Papert 1971].

Facr 1. Let ¥ be a nonempty finite set. For every o € X, define a predicate
6 :{1,...,n} > {T, F} such that it is true if and only if o appears at position i in the
string. The set of strings described by first-order logical sentences with predicates &
as defined here and the less-than relation (<) are precisely those described by star-free

regular expressions.

We now show that our specification language is as powerful as FOL and the less-than
(<) relation, and thus, by Fact 1, no more powerful than star-free regular expressions.
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Proor SKETCH. Since our design and design space definition uses % predicates
a1, ...,a, and our design is defined as a sequence of tuples, we must first show that
this can be mapped to the single symbol predicates o as defined in Fact 1.

Let = = {T, F}*, and for each w € %, we define the predicate y, to be true at position
i in the design if and only if w is identical to the tuple at position i in the design. Thus,
we have a set of predicates I' = {y,, : w € {T', F}*} in one-to-one correspondence with the
symbols that can occur at each position in a design, exactly like the setting in Fact 1.

Next, we must show that every rule in Table IV can be expressed in first-order logical
sentences using predicates y,, and the less-than (<) relation. Clearly, the first-order
logic formalism is identical in both settings, so we only need to show that the < relation
and terms such as @ and 8 can be expressed using the predicates y,, and the less-than
(<) relation. Every i < j relation rules can be expressed as (=@ < j)A—=(j <) Vi < j
over N.

Recall that any «, 8 in Table IV is one of the «; € A. The constraint «;(j) for a quanti-
fied variable j is satisfied by any tuple with a 7' value in its ith component. The set of
predicates I' contains 2¥~! predicates, all requiring a 7' in the ith component of a tuple
in the design. Thus, the constraint «;(;) can be replaced with the equivalent constraint
constructed by a disjunction of the predicates in the set {y,, : w € {T, F}~1T{(T, F}:}.

The NExTTO rules can be expressed by denying the possibility of an index between
those of the two parts in question—which is expressible in FOL with the less-than (<)
relation.

Since the ExacTLy and MORETHAN rules (see Tables I and II) allow for a constant n,
they are expressible using (respectively) exactly n or at least n variables and asserting
the presence of o at these indices, and translating that constraint into a constraint
using the y,, predicates as described previously. The n (respectively, n+ 1 for MORETHAN)
indices can be asserted to be all distinct by listing all of their permutations, which is
possible to express using the < relation.

The Orientation rules defined in Table V are expressible using FOL with the less-
than (<) relation and the given predicates. The DRIVES rule can clearly be written using
FOL and the y, predicates as discussed above. The INDUCES and REPRESSES rules in
Table VI do not affect the design space—so they can be ignored.

Thus, every design space described by Counting, Pairing, Positioning, Orientation,
and Interaction rules is describable by FOL with the less-than (<) relation, and there-
fore by star-free regular expressions. 0O

We have shown that the expressive power of our specification language is no greater
than that of a star-free language, that is, a regular language without the Kleene star
operator. This raises the following questions: What biological rule complexity and de-
sign intent does our language not capture? Let’s consider the following design pattern,
for example: pi,r1,c1, t1, p1,71, €1, t1, where p; denotes a promoter, r; denotes an RBS,
c¢1 denotes a coding sequence, and #; denotes a terminator. The Positioning rules of our
specification language are not expressive enough to specify only this design pattern. The
infinite class of all transcriptionally valid designs, that is, all designs with one or more
transcriptional units, each unit containing one or more genes, is also not describable
using these rules. To find a way how to deal with such problems, we explore in the next
section the applicability and expressivity of our specification language in a case study.

4. CASE STUDY: ITERATIVELY DESIGNING A GENETIC PRIORITY ENCODER CIRCUIT

Now, we demonstrate our specification language in a case study designing an artificial
synthetic biological system. The goal is is to manifest that our minimal specification
language is expressive enough to design large genetic circuits.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 11, No. 3, Article 25, Pub. date: December 2014.



A Rule-Based Design Specification Language for Synthetic Biology 25:9

= S
5 =3
!’
<}
=
~aocol|3
~o=ol|3
coo-=|2

I"I"--T

Repressor

iIZ | | Reporter

.

Repressor

Fig. 2. Logic and genetic NOR gates.

We performed the case study using miniEugene, which is part of the Eugene ecosys-
tem of software languages and library especially tailored for rule-based design speci-
fications of synthetic biological systems [Bilitchenko et al. 2011]. miniEugene allows
the specification of the rules presented in our specification language. Both, Eugene
and miniEugene are open-source (BSD-3 Clause License) and freely accessible via the
www.eugenecad.org web site (Creative Commons Attribution 4.0 International License
(CC BY 4.0)).

4.1. A Description of the Genetic Priority Encoder Circuit

A transcriptional NOR gate can be designed as a genetic device consisting of several
genetic parts (see Figure 2). It has two inducible promoters that initiate—depending
on the input signals—the transcription of a reporting gene, such as a green fluores-
cent protein (GFP). Only if both input signals are not present (i.e., “off”) in the NOR
gate’s environment, then a repressor gene allows a downstream promoter to initiate
transcription. If both input signals are present (i.e., “on”) or just one of them, then the
downstream promoter is repressed and hence, the reporter will not be transcribed.

Bugaj and Schaffer [2012] as well as Ruder et al. [2011] highlight recent advances
of genetic circuits using synthetic biology in therapeutics, making it possible to im-
plement and perform desired function depending on novel input signals. Shankar and
Pillai [2011] discuss synthetic biology as an aid in effective and cheaper drug synthe-
sis. A synthetic biological system could be designed to produce customized drugs for
individual patient treatment.

Lets imagine a biological system that responds to three input signals—inyg, in;, and
ing. These three inputs can, for example, correspond to biomarkers which report in-
creasing progression of a disease of a patient. For example, iny is only present in the
latest stages of the disease and iny in the earliest stage. A genetic Priority Encoder
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Fig. 3. The logic and genetic Circuits of the Priority Encoder.

could produce drugs to treat patients with a high concentration if the third input signal
(ing) is present, medium if in, is present, and low if ing is present.

In Figure 3(a) we present a traditional combinatorial logic circuit, demonstrating
what such a Priority Encoder would look like. Notice that out; and outy when taken
together as a binary value produce the values 3, 2, or 1 depending on the presence of
ing, iny, ing, respectively. What is not shown is the additional logic that would process
the out; and outy signals to produce a drug at the desired concentration.

4.2. The Case Study’s Part Library

First, we define a library of of artificial genetic parts and their relationships among
each other (such as orthogonal repressor-promoter pairs) or to specific input signals
(such as signal molecules that induce the transcription-translation process). The case
study’s part library P consists of

—four inducible promoters: pIngy, pIn;, pIng, po,
—five repressible promoters: p1, pe, ps, ps, ps,
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—seven ribosome binding sites: r1, ro, r3, r4, 15, r Outy, r Outy,
—five repressor genes: ¢y, ¢z, C3, C4, C5,

—two reporter genes: cOuty, cOut,

—seven terminators: ¢y, &g, 3, ta, t5, t Outy, t Out;.

The four input signals ing, inj, ing, and 0 are intended to INDUCE the four inducible
promoters plng, pIny, pIng, and py, respectively. The five repressor genes c1, co, c3, C4,
¢5 are intended the REPRESS the five repressible promoters p1, ps, ps, p4, ps, respectively.
The set of relations R in the case study’s part library looks as follows:

R := {(c1, represses, p1), (ce, represses, ps), (c3, represses, ps),
(cq, represses, py), (c5, represses, ps), (ing, induces, pInyg),
(iny, induces, pIny), (ing, induces, pIng), (0, induces, po)}.

4.3. The Case Study’s lterations

Due to the complexity of the Priority Encoder circuit, we iteratively specify its design
and try to reuse the specified rules of every iteration in the subsequent iteration.

—Iteration 1. In the first iteration, we focused on designing the basic part compositions,
that is, RBS-GENE-TERMINATOR triplets. We categorize the compositions into repressing
and reporting cassettes. A repressing cassette contains a repressor gene that has an
upstream RBS and one downstream terminator immediately next to it. A reporting
cassette has an equivalent structure except that the repressor gene is being replaced
with a reporter gene.

—Iteration 2. In the second iteration, we focus on extending the RBS-GENE-TERMINATOR
triplets with promoters that are receptive to the corresponding input signals. Then,
we “wire” the individual cassettes into devices for the output signals out; and outy.

—Iteration 3. In the final iteration, we reuse the rules specified in Iterations 1 and 2
and “wire” the out; and outy devices.

In the following, we demonstrate the execution of those three iterations following
two different approaches. In both approaches, we focus on designs with only forward
oriented parts using the ALL_FORWARD rule (see Table V).

4.4. Approach |—Rule-Based Approach

In this approach, we iteratively utilize rules of the formal specification language to
design a genetic Priority Encoder circuit.

Iteration 1. In the first iteration, we specify the structure of the RBS-GENE-TERMINATOR
compositions. miniEugene requires the specification of the length of the composition
which here is three (3). Then, we utilized Counting, Positioning, and Orientation rules
to specify the compositions, as illustrated in Figure 4. The two RBS-REPRESSOR-TERMINATOR
compositions refer to the dark blue and light blue NOR gates of the genetic Priority
Encoder circuit (see Figure 3(b)). For example, the ry-c1-t; triplet consists of the r; RBS
part, the repressor gene ¢y, and a terminator {;—exactly in this order and all being for-
ward oriented. Similarly, the r Out;-c Out;-t Out; composition for the Priority Encoder’s
out; signal contains one RBS rOut;, one reporting gene cOut;, and one terminator
tOuty.

Iteration 2. The out; signal is produced by the light blue NOR gate, which is induced
by a constant 0 signal and the repressor gene of the dark blue NOR gate. The two input
signals iny and in; bind to the two inducible promoters of the dark blue NOR gate. We
reused the rules specified in Iteration 1 and adapted the length of the ou#; design to
14. We attach promoters using Counting and Positioning rules and specify Interaction
rules for the desired regulatory interactions.
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// COUNTING
rl EXACTLY 1
cl EXACTLY 1
tl EXACTLY 1

// POSITIONING
rl BEFORE cl
rl NEXTTO cl
cl BEFORE tl
cl NEXTTO tl

// ORIENTATION
ALL_FORWARD

— rl-cl-tl —

— r2-c2-t2 —

// COUNTING
r2 EXACTLY 1
c2 EXACTLY 1
t2 EXACTLY 1

// POSITIONING
r2 BEFORE c2
r2 NEXTTO c2
c2 BEFORE t2
c2 NEXTTO t2

// ORIENTATION
ALL_FORWARD

E. Oberortner et al.

rOutl-cOutl-tOutl —

// COUNTING
routl EXACTLY
cOutl EXACTLY 1
tOutl EXACTLY 1

-

// POSITIONING
routl BEFORE cOutl
routl NEXTTO cOutl
cOutl BEFORE tOutl
cOutl NEXTTO tOutl

// ORIENTATION
ALL_FORWARD

Fig. 4. Rules for specifying RBs-GENE-TERMINATOR Compositions.

|— r1-c1-t1

Reused Rules

—| |— r2-c2-t2

—| |— rOut1-cOut1-tOut1 —|

Input Promoters of
r1-c1-t1

// COUNTING
pIn2 EXACTLY 1
pInl EXACTLY 1

// POSITIONING
pIn2 NEXTTO pInl
pIn2 BEFORE pInl

pIn2 NEXTTO rl

// INTERACTIONS
in2 INDUCES pIn2
inl INDUCES pInl

Input Promoters of
r2-c2-t2

// COUNTING
pO0 EXACTLY 1
pl EXACTLY 1

// POSITIONING
pl NEXTTO pO
pl BEFORE pl
pO0 NEXTTO r2

// INTERACTIONS
cl REPRESSES pl
0 INDUCES pO

___ Input Promoter of

rOut1-cOut1-tOut1

// COUNTING
p2 EXACTLY 1

// POSITIONING
p2 NEXTTO rOutl

// INTERACTIONS
c2 REPRESSES p2

Fig. 5. Rules for specifying the Priority Encoder’s out1 signal.

We illustrate the newly specified rules in Figure 5. Equivalently, we specify the out,
signal of the genetic Priority Encoder circuit, whose length is 19.

Iteration 3. In the final iteration, we connected the out; and out, signals by specifying
the desired repressing interaction between the c; repressor of the dark blue NOR gate
the p; input promoter of the orange NOR gate. In miniEugene, we must first specify
the length of the Priority Encoder circuit which is 33.

Following the rule-based approach, we discovered one limitation of our language.
Now, there are two instances of the p; promoter and the Positioning rules are not
expressive enough in such situations. Therefore, we have to duplicate the p; promoter
and modify the reused rules accordingly. p1_2 drives the expression of the ¢y repressor
gene, and pl_3 drives the expression of the c3 repressor gene.

4.5. Approach Il—A Template-Driven Approach

In the second approach, we utilize templates, which are abstracted and composite
Positioning rules. Templates enable us to specify “patterns” regarding the order and
arrangement of genetic elements. Therefore, we offer in miniEugene so-called Template
Constraints which are divided into the following two types.

—A Template restricts or ensures the total order of the elements in a design, enabling
to restrict or ensure the exact positioning of the genetic elements in the entire design.
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rl-cl-tl r2-c2-t2 rOutl-cOutl-tOutl
// TEMPLATE / TEMPLATE // TEMPLATE
TEMPLATE rl,cl,tl TEMPLATE r2,c2,t2 TEMPLATE rOutl,cOutl,tOutl
// ORIENTATION // ORIENTATION // ORIENTATION

ALL_FORWARD ALL_FORWARD ALL_FORWARD

Fig. 6. Templates for specifying RBS-GENE-TERMINATOR Compositions.

outl Signal out0 Signal

// TEMPLATES // TEMPLATES

SEQUENCE pIn2,pInl,rl,cl,tl
SEQUENCE pO,pl,r2,c2,t2
SEQUENCE p2,rOutl,cOutl,tOutl

SEQUENCE pl,pIn2,r3,c3,t3
SEQUENCE pIn2,pInO,r4,c4,t4
SEQUENCE p3,p4,r5,c5,t5

SEQUENCE p5,rOut0,cOut0,tOut0
// ORIENTATION
ALL_FORWARD // ORIENTATION
ALL_FORWARD

// INTERACTIONS

in2 INDUCES pIn2
inl INDUCES pInl

0 INDUCES pO

// INTERACTIONS
in2 INDUCES pIn2
in0 INDUCES pInO

cl REPRESSES pl
c2 REPRESSES p2

c3 REPRESSES p3
c4 REPRESSES p4
c5 REPRESSES p5

Fig. 7. Templates for specifying the Priority Encoder’s out; and outy signals.

—A Sequence enables to group genetic elements and to constrain their total order
within the set, but not within the entire design.

Iteration 1. In the first iteration, we specify templates to design the RBS-GENE-
TERMINATOR compositions. As shown in Figure 6, we define a miniEugene TEMPLATE
constraining the total order of the r;-c1-#; triplet.

Iteration 2. To combine the templates of the first iteration, we first need to convert the
templates into Sequences. In Figure 7, we illustrate the miniEugene scripts to specify
the out; and outy signals of the genetic Priority Encoder circuit. For example, the design
of the out; signaling device has a length of 14 and three SEQUENCE constraints. As a result
and as demonstrated in the subsequent section, we receive all possible permutations
of the three out; and four outy compositions.

Iteration 3. In the final iteration, we only need to combine the two miniEugene scripts
of Iteration 2 and set the length N of the genetic Priority Encoder design to 33.

4.6. Enumerated Designs

In both approaches—rule-based and template-driven—miniEugene returns an equiv-
alent set of designs. In Figure 8, we visualize an excerpt of the enumerated designs
using Pigeon [Bhatia and Densmore 2013].

In the first iteration, we specified the RBS-GENE-TERMINATOR compositions. Following
the rule-based approach we had to specify seven rules for each of the seven composi-
tions. Following the template-driven approach, we had the specify for each of the seven
compositions one template.

In the second iteration, we composed the RBS-GENE-TERMINATOR compositions into the
out1 and out0 signals of the Priority Encoder circuit. For the out1 signal, there are in
total six possible permutations of arranging the compositions. For the out0 signal, there
are in 24 permutations. In Figure 8, we visualize five randomly chosen out1 and out0
compositions. Following the rule-based approach, we had to specify 41 and 55 rules
for the outl and out0 signals, respectively. Following the template-driven approach
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Iteration 1:

E. Oberortner et al.
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Fig. 8. Visualization of each Iteration’s enumerated designs.

for the out1 signal, we had to specify three sequences, one Orientation rules, and five
Interaction rules. For the out0 signal, we had to specify four sequences, one Orientation
rule, and five Interaction rules.

In the final iteration, we had to specify the rules to arrange all seven compositions.
As a result, there are 5,040 possible permutations (7!) and we visualize five randomly
chosen in Figure 8. Following the rule-based approach, we had to specify 97 rules.
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Following the template-driven approach, we specified the seven templates, and had
to add one Orientation rule, and nine Interaction rules which reflect the regulatory
interactions in the genetic Priority Encoder design of Figure 3(b).

4.7. Discussion on the Rule-Based and Template-Driven Paradigms

Now, we discuss the forces and consequences of the rule-based and template-driven
paradigms based on questions that emerged while performing the case studies.

®-1. How does each paradigm incorporate a priori knowledge of the partial or total
order of arranging parts?

Following the rule-based paradigm, Positioning rules can be neglected if there’s no
a-priori knowledge on the order of the parts, leading to a more complex design space
exploration. The expressivity of the template-driven paradigm as presented in this
paper requires a priori knowledge of the parts order. In general, a priori knowledge
about the Positioning of parts reduces the design space.

®-2. How does each paradigm support human users?

We discovered, that a larger number of rules is difficult to manage for humans,
increasing the feasibility that conflicting rules are being specified. Templates, on the
other hand, provide a more user-friendly and manageable solution for the specification
of, mainly Positioning rules.

®-3. How does each paradigm ease debugging conflicting rules?

A large number of Rules is hard to debug for humans. Since templates are syntac-
tic sugar for Positioning rules, it makes it only easier to detect and debug conflicts
regarding Positioning rules.

®-4. How does each paradigm affect reusability in an iterative design process?

A rule-based approach eases the composition of designs by building only the union of
each design’s rules. This enhances the rule’s reusability, but might also need manual
(or automated) modifications. templates ease the (hierarchical) composition of designs.
However, if templates and their related rules are used to compose designs, then manual
(or automated) modifications might be needed.

®-5. How does each paradigm impact the enumeration or verification of rule-
compliant designs?

The efficiency of evaluating rules depends on the underlying model, algorithm, and
data structures. The complexity of enumerating the designs depends on the type of the
allowed constraints [Chen et al. 2006].

5. AMETHODOLOGY TO APPROXIMATE THE NUMBER OF RULE-COMPLIANT DESIGNS

In this section, we describe how the number of valid designs grow compared to the
length of each design, IV, and the size of the user specified part library, 2. Without any
rules, there are 2VEN possible designs, with the 2V term due to the directionality of
parts. Since rules can only eliminate designs, this is an upper bound for the number of
valid devices. Thus, in all cases, the number of valid designs grows at most polynomial
in the size of the part library. However, it can grow exponentially in the length of
the design. Because the number of valid designs can quickly grow larger than what a
computer can generate, we present counting as a way to explore large design spaces, as
a priori knowledge of the number of valid designs is useful for determining statistical
significance when only some designs have been generated as well as calculating the
largest design length that can be worked with.
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// Repressing Device: // Repressing Device: // Reporting Device
// K inputs // riIn-gIn-tIn poOut DRIVES cOut
pInl DRIVES cIn rIn WITH cIn
pIn2 DRIVES cIn tIn WITH cIn pOut EXACTLY 1
It + « & rOut EXACTLY 1
pInK DRIVES cIn // POSITIONING cOut EXACTLY 1
cIn BEFORE tIn tOut EXACTLY 1
NOT pInl MORETHAN 1 cIn NEXTTO tIn
NOT pIn2 MORETHAN 1 rIn BEFORE cIn // POSITIONING
/7 . .. rIn NEXTTO cIn cOut BEFORE tOut
NOT pInK MORETHAN 1 cOut NEXTTO tOut
// INTERACTIONS rout BEFORE cOut
// ORIENTATION cIn REPRESSES pOut rOut NEXTTO cOut

ALL_FORWARD

. . int in2
it in2 Swap Device Orderings | |

N [ L]

In1 In2 QOut In1 In2
pl p o p cOut pOut cOut. pin1  pin: d:n

Choose Inducible Promoters
in2 inK
in2 inK

T [ ]

In2  pinK Out Out In2  pInK
P P cln P cOut P cOut P P cln

Fig. 9. Rules and enumerated transcriptional NOR gates.

Now, we count the number of rule-compliant NOR-gates. In Figure 9, we demonstrate
the rules for specifying all possible N input transcriptional NOR gates that can be made
up from % possible inducible promoters, where N = N — 7. We restrict N > 1and k2 > 1
to have a non-empty solution set. Notice that two decisions can be made that uniquely
describe each design—the inducible promoters chosen and the order of the repressing
and reporting device. In Figure 9, the decisions are annotated with Choose Inducible
Promeoters (up-down) and Swap Device Orderings (left-right), respectively. The former
has N-permutations of % possible choices and the latter has two (2) possible choices.
Since the decisions are independent the total number of designs is the product of the
two which gives a total of

)
—_— X
(k— N)!
possible designs.

In Table VII, we display the number of valid designs after a single rule is applied to
parts ¢ and 8, with an ALL_FORWARDS rule added for cases where it is not yet known how
to calculate the number of designs without it. To calculate the ExacTLY rule, notice that
once « has been placed there are (£ — 1)V~ ways to place the other parts. Multiplying
this with the (N ) unique ways to place « in n spots gives the total number of designs.
The ExacTLY rule can be used to calculate other counting rules by summing over n, such
as the MORETHAN rule.

We now demonstrate how to calculate the number of valid designs with a BEFORE
rule applied. To calculate the number of valid designs, consider the case where part
o appears exactly m times and the last appearance of « is at position ;. Then, we can
divide the design into two pieces: the first one ranging from position 1 toi — 1 and the
second one ranging from position i + 1 to N. The first piece has exactly m — 1 instances
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Table VII. Calculating the Design Space Size based on Rules (¢ # 8, n € N)

Rule Amount of Designs
Unrestricted NN
DESIGN TEMPLATES 2k1 x 2kg X - -+ x 2ky
o EXACTLY n A M)k — 1N
ALL FORWARD
CONTAINS « N — (k- 2)N

N N . . .
« ALLBEFORE g A | (k—DN+ Y 3 (F4)k— 20k — DN

ALL FORWARD m=1i=m

N .
« MORETHAN 7 A > Mk -1V
ALL FORWARD i=mt1

of &, and since the rest of the positions cannot be filled with o or g, which—using
the ExacTLy formula—results in ( __11)(k — 2)i~™ possible designs. The second piece can

13
be anything but «, resulting in (¢ — 1)V~ possible designs. The multiplication gives
the total number of designs with m instances of & with the last instance appearing at
position i. Now if m ranges from 1 to IV, i must range from m to N. Summing over these
bounds and adding in the number of designs that have no instances of « gives the final
solution.

If a design specification consists of rules not listed in Table VII, then we can define an
upper bound of the number of designs. Therefore, we can use the listed rule calculations,
along with related rules and those modified by the negation operator (NoT). For example,
if D(R) returns the number of designs specified by rule R, then the upper bound of a con-
junction of rules can be defined as: D(R{ARsA---AR,) < min(D(Ry), D(Ry), ..., D(R,)) <
D(UNRESTRICTED). For a disjunction of rules, we can define the upper bound as follows:
DRV RyVv---VR.)<D(R;y)+ D(Rg) + - - - + D(R,) < r D(UNRESTRICTED).

6. A SURVEY OF RULE-BASED BDA TOOLS FOR SYNTHETIC BIOLOGY

This section provides a brief survey of BDA tools that enable the specification of rules.
We survey the tools according their application in the synthetic biology design process
and what types of rules are supported.

GenoCAD [Czar et al. 2009] and the Genetic Engineering of Cells (GEC) are lan-
guages enabling the management of libraries of genetic parts and to specify and con-
strain their part compositions. GenoCAD’s utilization of context-free grammars for
rule-based part compositions, supporting (1) the specification of hierarchical composi-
tions and (2) more expressive Positioning, Counting, Pairing, and Orientation rules.
Recently, GenoCAD’s applicability as a rule-based design tool has been published in
[Purcell et al. 2013]. GEC enables the specification of Interaction rules among genes
and proteins. Programs in GEC are compiled into sequences of genetic parts using
logical programming and knowledge about chemical reactions.

The LifeTechnologies’ VectorNTI Express Designer and DeviceEditor [Chen et al.
2012] are BDA tools that incorporate Eugene, and thereby rules, into the design pro-
cess of synthetic biological systems. Both tools offer features to manage libraries of
genetic parts. For combinatorial design problems, Vector NTI Express Designer uti-
lizes Eugene to automatically generate all possible combinations of parts into devices
and systems. In DeviceEditor, the DNA constructs under design are specified as a se-
quence of “bins”, each being populated with selected parts from the part library. DNA
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constructs can either be “circular” or “linear”. In linear DNA constructs, the sequence
of bins is comparable to a template, enabling the specification of Positioning rules. The
applicability of Positioning rules on circular constructs needs, however, further investi-
gation. DeviceEditor also enables to constrain the number of occurrences of particular
genetic parts, hence supporting Counting and Pairing rules. Also, Orientation rules
are supported since the user can map DNA sequences onto parts and specify the part’s
orientation.

7. CONCLUSION AND FURTHER WORK

This work builds the basis of a rule-based design paradigm for Synthetic Biology. In
early iterations of engineering novel biological systems, a large number of possible
compositions of parts, devices, or systems exists. Human competences cannot cope
with enumerating all possible combinations and, moreover, not all of them will work in
biology. Hence, computational support is required which incorporates “rules” inferred
from biological discoveries into the design process.

In this work, we presented a rule-based design specification language. We (1) for-
mally defined the semantics of design-specific rules based on the language of first-order
logic and (2) characterize the expressiveness of the rules. We divide the rules into five
categories: Counting, Pairing, Positioning, Orientation. and Interaction. We have im-
plemented all the formalized rules, as specified in this work, in miniEugene which is
available at www.eugenecad.org. We demonstrated its applicability on a case study in
which we iteratively designed a genetic Priority Encoder circuit “wired” of transcrip-
tional NOR gates. The case study and our approaches should act as guidelines how to
utilize miniEugene, its rules, and design facilities.

Due to size and complexity of combinatorial design spaces, it is not always advis-
able to enumerate, generate, and physically build all designs up front. Therefore, we
have also touched a strategy to approximate the number of rule-compliant designs.
Such methods enable to estimate and approximate how many rule-compliant designs
exist, how long it would take to physically build and test them, and how costly the
experiments could be.

Sophisticated models, efficient algorithms, and standardized data structures influ-
ence the computational niche of synthetic biology. Although the contributions of this
work are still in its infancy, we believe that the rule-based design paradigm will become
more prominent in the specification, design, and communication of synthetic biological
systems.
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