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INTRODUCTION: Living systems execute reg-
ulatory programs and exhibit specific pheno-
types depending on the identity and timing of
chemical signals, but general strategies for
mimicking such behaviors with artificial ge-
netic programs are lacking. Synthetic circuits
that produce outputs only depending on sim-
ultaneous combinations of inputs are limited
in their scale and their ability to recognize dy-
namics because they do not uniquely detect or
respond to temporally ordered inputs. To address
these limitations, we developed and experimen-
tally validated a framework for implementing
state machines that record and respond to all
identities and orders of gene regulatory events
in living cells.

RATIONALE:Webuilt recombinase-based state
machines (RSMs) that use input-driven recom-

binases to manipulate DNA registers made up
of overlapping and orthogonal pairs of recom-
binase recognition sites. Specifically, chemical
inputs express recombinases that can perform
two types of irreversible operations on a reg-
ister: excision if their recognitionsites are aligned,
or inversion if their recognition sites are anti-
aligned. The registers are designed to adopt a
distinct DNA sequence (“state”) for every pos-
sible “permuted substring” of inputs—that is,
every possible combination and ordering of in-
puts. The state persists even when inputs are
removed and may be read with sequencing or
by polymerase chain reaction. Usingmathemat-
ical analysis to determine how the structure of
a RSM relates to its scalability, we found that
incorporating multiple orthogonal pairs of rec-
ognition sites per recombinase allows a RSM to
outperform combinational circuits in scale.

Genetic parts (made up of promoters, ter-
minators, and genes) may be interleaved into
RSM registers to implement gene regulation
programs capable of expressing unique com-
binations of genes in each state. In addition,
we provide a computational tool that accepts

a user-specified two-input
multigene regulation pro-
gram and returns corre-
sponding registers that
implement it. This search-
able database enables fac-
ile creation of RSMs with

desired behaviors without requiring detailed
knowledge of gene circuit design.

RESULTS:Webuilt two-input, five-state RSMs
and three-input, 16-state RSMs capable of re-
cording every permuted substring of their
inputs. We tested the RSMs in Escherichia
coli and used Sanger sequencing to measure
performance. For the two-input, five-state RSM,
at least 97% of cells treated with each permuted
substring of inputs adopted their expected state.
For the three-input, 16-state RSM, at least 88%
of cells treated with each permuted substring of
inputs adopted their expected state, although
weobserved 100% formost treatment conditions.
We used these two- and three-input RSMs

to implement gene regulation programs by in-
terleaving genetic parts into their registers.
For the two-input, five-state system,wedesigned
registers for various gene regulation programs
using our computational database and search
function. Four single-gene regulation programs
and one multigene regulation program (which
expressed a different set of fluorescent reports
in each state) were successfully implemented in
E. coli, with at least 94% of cells adopting their
expected gene expression profile when treated
with each permuted substring of inputs. Lastly,
we successfully implemented twodifferent three-
input, 16-state gene regulation programs; one of
these—a three-inputpasscodeswitch—performed
with at least 97% of cells adopting the expected
gene expression behavior.

CONCLUSION:Our work presents a powerful
framework for implementing RSMs in living
cells that are capable of recording and respond-
ing to all identities and orders of a set of chem-
ical inputs. Depending on desired applications,
the prototypical inducible systems used here to
drive the RSMs can be replaced by sensors that
correspond to desired input signals or gene
regulation events. We anticipate that the in-
tegration of RSMs into complex living systems
will transform our capacity to understand and
engineer them.▪
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Summary of a three-input, 16-state RSM. (A) The RSM mechanism. A chemical input induces
the expression of a recombinase (from a gene on the input plasmid) thatmodifies a DNA register
made up of overlapping and orthogonal recombinase recognition sites. Distinct recombinases
can be controlled by distinct inputs. These recombinases each target multiple orthogonal pairs
of their cognate recognition sites (shown as triangles and half-ovals) to catalyze inversion (when
the sites are anti-aligned) or excision (when the sites are aligned). (B) The register is designed to
adopt a distinct DNA state for every identity and order of inputs.Three different inputs—orange,
blue, and purple—are represented by colored arrows, each of which expresses a distinct recombinase.
Unrecombined recognition sites are shaded; recombined recognition sites are outlined.
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State machines underlie the sophisticated functionality behind human-made and natural
computing systems that perform order-dependent information processing. We developed a
recombinase-based framework for building state machines in living cells by leveraging
chemically controlled DNA excision and inversion operations to encode states in DNA
sequences. This strategy enables convenient readout of states (by sequencing and/or
polymerase chain reaction) as well as complex regulation of gene expression.We validated our
framework by engineering state machines in Escherichia coli that used one, two, or three
chemical inputs to control up to 16 DNA states. These state machines were capable of
recording the temporal order of all inputs and performing multi-input, multi-output control of
gene expression. We also developed a computational tool for the automated design of gene
regulation programs using recombinase-based state machines. Our scalable framework
should enable new strategies for recording and studying how combinational and temporal
events regulate complex cell functions and for programming sophisticated cell behaviors.

S
tate machines are systems that exist in any
of a number of states, in which transitions
between states are controlled by inputs (1).
The next state of a given state machine is
determined not only by a particular input,

but also by its current state. This state-dependent
logic can be used to produce outputs that are
dependent on the order of inputs, unlike in com-
binational logic circuits wherein the outputs are
solely dependent on the current combination of
inputs. Figure 1 depicts a statemachine that enters
a different state for eachpermuted substringof two
inputs A and B, by which we refer to each distinct
combination and ordering of those two inputs:
{no input, A only, B only, A followed by B (A →
B), B followed by A (B→ A)}.
Synthetic statemachines that recordandrespond

to sequencesof signalingandgene regulatory events
within a cell could be transformative tools in the
study and engineering of complex living systems.
For example, in human development, progenitor
cells differentiate into specific cell types with dis-
parate functions determined by the timing and
order of transcription factor (TF) activation (2, 3).
This information has allowed researchers to pro-
gram human stem cells into differentiated cells

(4, 5), and conversely, reprogram differentiated
cells into stem cells by means of exogenous, se-
quential TF activation (6, 7). However, the tempo-
ral organization of TF cascades that drive different
cell lineages remains largely unknown. State ma-
chines that record and actuate gene expression
in response to the order of TF activation in in-
dividual cells would be useful for understanding
and modulating these differentiation processes.
Such state machines may also improve our

understanding of disease progression, which can
also depend on the appearance and order of extra-
cellular and intracellular factors. For example, in
cancer, the temporal order of genetic mutations in
a tumor can determine its phenotype (8). Similarly,
in both somatic diseases andpathogenic infections,
preadaptation of disease cells to different envi-
ronmental conditions may affect the way the cells
behave and respond to drug treatments (9–12).
Integrating state machines into disease models
and subsequently analyzing the history of cells
that survive treatment would be useful for under-
standing howdisease progression affects therapeutic
response.
Despite their potential to transform the under-

standing and engineering of biological systems,
complex functional statemachines have yet to be
implemented in living cells because of a lack of
scalable and generalizable frameworks (13). Oishi
et al. proposed a theoretical CRISPR interference-
based strategy for building state machines in
living cells, in which state is encoded epigenet-
ically (14). In contrast, we developed a scalable
recombinase-based strategy for implementing
state machines in living cells, in which a given
state is encoded in a particular DNA sequence.
The direct storage of state information in the
DNA sequence ensures that it is maintained stably

andwithminimal burden to the cell. Recombinases
have been used to implement switches (15–19),
chemical pulse counters (20), Boolean logic gates
integrated with memory (21, 22), and temporal
logic (23). We used them to implement scalable
statemachines, such as those that can distinguish
among all possible permuted substrings of a set
of inputs with unique gene expression outputs.
We refer to our state machine implementations
as recombinase-based state machines (RSMs).

Recombinase-based state machine parts
and operations

In a RSM, inputs are defined by chemical signals,
and state is defined by the DNA sequence within
a prescribed region of DNA, termed the register.
Chemical signals mediate state transitions by in-
ducing the expressionof large serine recombinases
that catalyze recombination events on the register,
thereby changing the state. Specifically, each re-
combinase recognizes a cognate pair of DNA re-
cognition sites on the register, attP (derived from
aphage) and attB (derived from its bacterial host),
and carries out a recombination reaction between
them, yielding attL and attR sites (made up of
conjoined halves of attB and attP) (24, 25). In the
absence of extra cofactors, this reaction is irre-
versible (fig. S1 and text S1) (26–28). Each site in a
cognate attB-attP pair has a matching central di-
nucleotide that determines its polarity (29, 30). If
the two sites are anti-aligned (oriented with op-
posite polarity) on the register, then the result of
their recombination is the inversion of the DNA
between them (Fig. 2A and fig. S2A). Alternatively,
if the two sites are aligned (oriented with the same
polarity) on the register, then the result of their
recombination is the excision of the DNA between
them (Fig. 2B and fig. S2B). DNA segments that
are excised from the register are assumed to be
lost because of a lack of origin of replication.
When there aremultiple inputs to a RSM, they

can each drive distinct recombinases that oper-
ate only on their own attB-attP pairs. At least 25
(putatively orthogonal) large serine recombinases
have been described and tested in the literature
(18, 25), and bioinformatics mining can be used
to discover even more (18). Recognition sites for
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Inputs: { A, B }
States: { S1, S2, S3, S4, S5 }

Fig. 1. Example of a state machine. Nodes rep-
resent states; arrows represent transitions between
states mediated by inputs. Each of the possible
permuted substrings of the two inputs A and B
generates a unique state.
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multiple recombinases may be arranged in sev-
eral different ways on the register. If attB-attP
pairs from different recombinases are nested
or overlapping, then the operation of one recom-
binase can affect the operation of subsequent
recombinases—either by rearranging the relative
orientation of their attB and attP sites or by
excising one or both sites in a pair from the

register—thereby precluding any type of down-
stream operation on these sites. For example, if
we consider the initial register design in Fig. 2C,
applying input B → A leads to a unique DNA
sequence, but applying A→ B leads to the same
DNA sequence we would expect if we only ap-
plied A, because the A-driven recombinase excises
a site for the B-driven recombinase.

We measure the “information capacity” of a
RSMby the number of distinct states it can access,
and hence the number of permuted substrings of
inputs it can distinguish. Given the noncommu-
tative nature of recombinase operations on a reg-
ister, onemight naïvely believe that the information
capacity of RSMswould behave likeN! forN inputs.
But if aRSMisdesigned such that each input-driven
recombinase only has one attB-attP pair on the
register, the information capacity of the RSM
never exceeds 2N, which is the result we would
expect if recombinase operations were commu-
tative (Box 1 and text S2). To circumvent this in-
formation bottleneck, registersmust be designed
with multiple orthogonal attB-attP pairs per re-
combinase. Orthogonal attB-attP pairs for a large
serine recombinase can be engineered by mutat-
ing the central dinucleotide of each site in the
native attB-attP pair (29–31). Pairs of sites with
the same central dinucleotide sequence should
recombine, but they should not recombine if the
central dinucleotide sequences do notmatch (Fig.
2D and fig. S2C).

Building a two-input, five-state RSM

To implement a RSM that enters a different state
(five in total) for every permuted substring of two
inputs, it was sufficient to use two orthogonal
attB-attP pairs for one recombinase and one attB-
attP pair for the other recombinase. Figure 3A
shows the RSM design and a detailed represen-
tation of its state diagram. This RSM is com-
posed of two plasmids: an input plasmid and an
output plasmid. The input plasmid, at a high copy
number, expresses two large serine recombinases,
BxbI and TP901, from the anhydrotetracycline
(ATc)–inducible PLtetO promoter and the arab-
inose (Ara)–inducible PBAD promoter, respec-
tively. The output plasmid, at a single copy
number, contains the register that is modified
by the recombinases expressed from the input
plasmid.
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b ca

attB-attP
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attL-attR

input A input B
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Fig. 2. Rules of recombination on a register. The register is depicted as an array of underscored
alphabet symbols (arbitrary DNA) and shape symbols (recognition sites). (A) If sites in an attB-attP
pair are anti-aligned, then the DNA between them is inverted during recombination. (B) If sites in
an attB-attP pair are aligned, then the DNA between them is excised during recombination. (C) Multiple
inputs can drive distinct recombinases that operate on their own attB-attP pairs. In this example, input A
drives the orange recombinase and input B drives the blue recombinase. (D) Multiple orthogonal attB-
attP pairs for a given recombinase can be placed on a register. Here, distinct shapes denote two pairs of
attB-attP. Up to six orthogonal and directional attB-attP pairs can be created per large serine recombinase
(31). Figure S2 gives more detail on the recombination reactions shown here.

Output plasmidInput plasmid

PLtetO

BxbI

PBAD

TP901

a b c d e f g
S1:

a b c f g a f e c d b g
S2: S3:

a f c b g a f c e d b g
S4: S5:

ATc Ara

ATcAra

= % of cells in expected state

= % of cells not in expected state 

S1
100

S2
99

S3
100

S4
97

S5
97

Chemical inputs: { ATc, Ara }

Recombinase recognition sites:

= unrecombined TP901 sites *

= recombined TP901 sites

= unrecombined BxbI sites

= recombined BxbI sites

*Recognition sites with different 
symbol shapes do not cross react

DNA states: { S1, S2, S3, S4, S5 }

Key:

Arbitrary DNA sequences: { a, b, ... , g }

Register

Fig. 3. Designing and validating a two-input, five-state RSM. (A) The two plasmids used to implement the RSM (top) and a detailed state diagram demonstrating the
resulting register for each permuted substring of the two inputs (ATc and Ara; bottom). (B) The performance of the RSM in E. coli. Nodes represent populations of cells
inducedwith permuted substrings of the inputsATc (orange arrow) andAra (blue arrow).Cultureswere treatedwith saturatingconcentrations of each input (ATc, 250ng/ml;
Ara, 1% w/v) at 30°C for 18 hours in three biological replicates. Node labels indicate the expected state [corresponding to (A)] and the percentage of cells in that state as
determined by Sanger sequencing of colonies from individual cells in each population (at least 66 cells totaled over all three biological replicates).
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The register is initially composed of an aligned
BxbI attB-attP pair and two anti-aligned and
orthogonal TP901 attB-attP pairs. If ATc is intro-
duced first to the system, then BxbI is expressed
and excises the DNA inside of its cognate recog-
nition site pair, which includes a recognition
site for TP901. Subsequent introduction of Ara
to the system induces the expression of TP901,
which recombines its cognate recognition sites
on the outer edge of the register, thus inverting
everything in between. Conversely, if Ara is intro-
duced first to the system, then the outer TP901
sites invert everything between the edges of the
register and the inner TP901 sites invert an inner
portion of the register, thus setting the BxbI rec-
ognition sites into an anti-aligned configuration.
Subsequent application of ATc to the system
inverts the sequence of DNA between the BxbI
sites. As a result, each permuted substring of the
inputs yields a distinct DNA sequence on the
register.
To evaluate the performance of the RSM in

Escherichia coli, we grew five populations of
cells that were treated with all five permuted
substrings of the inputs ATc and Ara (no input,
ATc only, Ara only, ATc → Ara, and Ara→ ATc).
We Sanger-sequenced the register in colonies of
at least 22 cells from each population in each of
three biological replicates to determine the per-
cent of cells with the expected DNA sequence
(Fig. 3B) (32). At least 97% of all cells treated
with each permuted substring of inputs adopted
the expected state, thus confirming the fidelity
of our RSM. Table S1 provides information for
the sequenced registers that were not in the ex-
pected state.
Because our Sanger sequencing readout of

state was low-throughput, we also developed a
quantitative polymerase chain reaction (qPCR)–
based method to conveniently interrogate state
on a population-wide level. The excision and in-
version of DNA segments in our register permitted
the design of primer pairs that were amplified
in some states but not others. We created a
computer program, the PCR-based state inter-
rogation tool (PSIT), to identify all possible sets
of primer pairs that uniquely identify each state
of a given register (fig. S3 and appendix S2). For
our two-input, five-state RSM, we chose a set of
three primer pairs and performed qPCR on DNA
that was isolated from each population of cells
treated with all possible permuted substrings of
the ATc and Ara inputs. The fractional amount
of register DNA amplified was calculated for
each primer pair in our set and was compared to
what we would expect if all cells in each pop-
ulation adopted just one of the five possible
states (32). In agreement with our sequencing
results, the qPCR measurements of all exper-
imental populations were most similar to what
we would expect if all cells in each population
adopted their expected state (fig. S4).

Scaling RSMs

We developed a modular register design strategy
for building RSMs that enter a distinct state for
every permuted substring of inputs (approximately

eN! states for N inputs; see table S2 and texts S4
and S5). For N inputs, the design strategy uses
N – 1 recognition sites per recombinase, and hence
is limited to register designs for up to seven inputs
(13,700 states) because only six orthogonal and
directional attB-attP pairs can be created per large
serine recombinase (31).
Because the two-input, five-state RSM shown

in Fig. 3A represents only a marginal improve-
ment in information capacity over two-input,
four-state systems achievable by combinational
computation, we sought to further demonstrate
the information capacity enabled by our RSM
framework by scaling to a three-input, 16-state
RSM (Fig. 4A and fig. S5). The input plasmid
for this state machine expresses an additional
recombinase, A118, under a 2,4-diacetylphloro-
glucinol (DAPG)–inducible PPhlF promoter system,
and its register uses two orthogonal attB-attP
pairs for each of the three recombinases (fol-
lowing the design strategy in text S5).
To evaluate the performance of this RSM in

E. coli, we grew 16 populations of cells that were
treated with all 16 permuted substrings of the
inputs ATc, Ara, and DAPG. We sequenced the

register in colonies of five or six cells from each
population in each of three biological replicates
to determine the percentage of cells with the
expected DNA sequence (Fig. 4B) (32). In most
populations, 100% of the cells adopted their ex-
pected state, and even in the worst-performing
population (ATc→ Ara → DAPG), 88% of cells
adopted their expected state. Table S1 provides
information for the sequenced registers that were
not in the expected state. We also measured the
predominant state of each population by qPCR
with a set of six primer pairs elucidated by PSIT
(32). In agreement with the sequencing results,
the qPCRmeasurements for all experimental pop-
ulations were most similar to what we would ex-
pect if all cells in each population adopted their
expected state (fig. S6).

Gene-regulatory RSMs

Our state machine framework enables the cre-
ation of state-dependent gene regulation programs
that specify which genes should be expressed or
not expressed in each state. This could be useful
for a wide range of biological applications, such
as programming synthetic differentiation cascades,
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Box 1. Mathematical discussion of RSMs.

If a RSM with N inputs is designed such that each input-driven recombinase only has one
attB-attP pair on the register, the number of states cannot exceed 2N.To prove this important
claim, we first introduce the concept of irreducibility. An irreducible string of recombinases is
one in which, when the recombinases are applied to a register in the given order, each
recombinase performs an operation (excision or inversion) on the register. We can make the
following two statements about irreducible strings:

Statement 1: Every possible state of a register must be accessible by the application of
some irreducible string of recombinases.This follows from considering that (i) each state is
the result of a string of recombination operations, and (ii) the string of recombinases corresponding
to that string of recombination operations is irreducible by definition.

Statement 2: Assuming a register with one attB-attP pair per recombinase, all irreducible
strings from the same subset of recombinases generate the same state on the register.
This follows from considering that (i) all rearrangeable DNA segments on the register are
flanked on both sides by attB and/or attP sites belonging to the subset of recombinases
being applied; (ii) by the definition of irreducibility, each recombinase in the irreducible
string will catalyze recombination between its attB-attP pair; and (iii) when recombination
between attB and attP sites occurs, they always form the same junctions: The back end of
the attB will join the front end of the attP, and the front end of the attB will join the back end of
the attP. Therefore, all rearrangeable DNA segments will form the same junctions after
an irreducible string of recombinases is applied, regardless of the order in which those
recombinases are applied.

Now to prove the claim: Given a RSM with N input-driven recombinases and one pair of
attB-attP per recombinase on its register, all states must be accessible by some irreducible string
of recombinases (statement 1), and all irreducible strings from the same subset of the N
recombinases must generate the same state (statement 2).Therefore, there cannot be more
states than there are subsets of recombinases, which is 2N (see text S2 for a more detailed version
of this proof).

More generally, this proof can be expanded to show that, given k pairs of orthogonal attB-attP
pairs per recombinase on a register, the number of states it can access will never exceed 2kN

(see text S3). For large serine recombinases, there is a limit of k = 6 orthogonal and directional
attB-attPpairs for a given recombinase (31).Therefore, the information capacity of RSMs using large
serine recombinases is intrinsically bound exponentially.

There are still many unanswered mathematical questions regarding RSM structure. For example,
given a DNA sequence, what is the computational difficulty of deciding whether it admits an
irreducible ordering of a set of recombinases? Is this problem NP-hard? Also, how can we decide
whether an irreducible string of recombinases has minimal length, or whether there might be a
shorter irreducible string that produces the same DNA sequence?
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encoding the identities and order of biological
events into selectable or sortable reporters, or
targeting genetic perturbations to cells that ex-
perience a particular order of biological events.
Gene regulation programs can be implemented
by incorporating genetic regulatory elements,
such as promoters, terminators, and genes, into
the registers of our RSMs. The rearrangement of
these elements in each state should then alter
gene expression in a predictable manner. Such
RSMs are a biological realization of Moore ma-
chines from automata theory, where each state is
associated with a set of outputs (1). We refer to
them as gene-regulatory RSMs (GRSMs).
To help researchers design circuits for desired

gene regulation programs, we created a large,
searchable database of two-input, five-stateGRSM
registers. To compile this GRSM database (Fig. 5),
we first enumerated all possible registers that
could result from interleaving functionally dis-
tinct parts (made from terminators, constitutive
promoters, and genes; see text S6 for more de-
tails) before and after each recombinase recog-
nition site in our validated five-state register
from Fig. 3A. We evaluated each state of each
register for gene transcription, and aggregated
registers that implement the same gene regu-
lation program. During this evaluation step,
we assumed that all genes had bidirectional
terminators on their 3′ ends, thus disallowing
the possibility of an RNA polymerase traversing

a gene (in either direction) to transcribe another
gene. We also assumed that each gene in a reg-
ister was distinct. These assumptions were made
to simplify register designs and keep the data-
base at a manageable size for fast computational
search.
To avoid redundancy in the database, we re-

moved any register with superfluous parts (con-
taining terminators, promoters, or genes that do
not affect gene regulation in any state) if its
“parent” register [the same register except with-
out the superfluous part(s)] was also represented
in the database. Moreover, all registers that tran-
scribed either no gene or the same gene in every
state were removed from the database, as this
gene regulation is trivial to implement.
The resulting database (database S1) con-

tains a total of 5,192,819 GRSM registers that
implement 174,264 gene regulation programs.
Each register is different in the sense that no
two registers have all of the same parts in all
of the same positions. Registers in the data-
base regulate the transcription of 1 to 14 genes
(fig. S7A). A register for any desired program
that regulates up to three genes is likely to be
in the database, which comprises 100% of pos-
sible single-gene regulation programs, 95% of
possible two-gene regulation programs, and
61% of possible three-gene regulation programs
(fig. S7B). Moreover, 27% of possible four-gene
regulation programs are represented in the data-

base, but the percentage drops off steeply beyond
that, as the number of possible gene regulation
programs grows exponentially with each addi-
tional gene (text S7). One could apply straight-
forward gene replacement principles to go beyond
the scope of regulation programs represented
in the database—for example, by replacing multi-
ple distinct genes on a register with copies of the
same gene, or replacing a gene with a multi-
cistronic operon (fig. S8). To conveniently use the
GRSM database for design or exploration, we
created a search function that accepts a user-
specified gene regulation program and returns
all registers from the database that may be used
to implement it (Fig. 5 and appendix S1).
To create functional GRSMs in E. coli, we

implemented the same input-output plasmid
scheme as our two-input, five-state RSM (Fig.
3A), except that we substituted registers from
our database on the output plasmid. Fluores-
cent protein (FP) genes were built on the reg-
isters to evaluate gene regulation performance.
We grew populations of cells treated with all five
permuted substrings of the inputs ATc and Ara,
and then used flow cytometry on each popula-
tion to measure the percentage of cells with
distinct FP expression profiles (32). We success-
fully implemented four single-gene regulation
programs (Fig. 6, A to D) and one multigene reg-
ulation program (in which unique subsets of
three distinct FPs were expressed in each state;

aad8559-4 22 JULY 2016 • VOL 353 ISSUE 6297 sciencemag.org SCIENCE

Input plasmid

PLtetO

BxbI

PBAD

TP901

PPhlF

A118

Output plasmid

S2
100

Chemical inputs: { ATc, Ara, DAPG }

Recombinase recognition sites:

= unrecombined TP901 sites *

= unrecombined BxbI sites *

*Recognition sites with different symbol shapes
 do not cross react

DNA states: { S1, S2, ... , S16 }

Key:

= unrecombined A118 sites *

S1
100

S3
94

S4
100

S5
94

S6
94

S7
100

S8
100

S9
100

S10
100

S15
94

S11
88

S12
100

S13
100

S14
100

S16
100

= % of cells in expected state = % of cells not in expected state 

Fig. 4. Scaling to a three-input, 16-state RSM. (A) The two plasmids used
to implement the RSM. ATc, Ara, and DAPG induce expression of BxbI,TP901,
and A118 recombinases, respectively. A detailed state diagram of the register
on the output plasmid is shown in fig. S5. (B) The performance of the RSM in
E. coli. Nodes represent populations of cells induced with all permuted sub-
strings of the inputs ATc (orange arrow), Ara (blue arrow), and DAPG (purple

arrow). Cultures were treated with saturating concentrations of each input
(ATc, 250 ng/ml; Ara, 1% w/v; DAPG, 25 mM) at 30°C for 24 hours in three
biological replicates. Node labels indicate the expected state (corresponding
to fig. S5) and the percentage of cells in that state as determined by Sanger
sequencing of colonies from individual cells in each population (at least 17 cells
totaled over all three biological replicates).
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Fig. 6E), with at least 94% of cells from each
experimental population adopting the expected
FP expression profile. These GRSMs enable con-
venient fluorescent-based reporting on the iden-

tity and order of cellular events. For example, the
GRSM from Fig. 6E allowed us to evaluate the
performance of the underlying RSM with in-
creasing input time durations (by 1-hour steps)

by means of flow cytometry (fig. S9). Our find-
ings demonstrated that input durations of 2 hours
were sufficient for amajority of cells to adopt their
expected state.
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List of registers

r1 r2 r3 r4 r5 r6 r7

Register template

Parts

Enumerate all combinations of functionally distinct parts
in the regions (r1-r7) of the register template

Evaluate each register for gene regulation, and aggregate 
registers that implement the same gene regulation program

Input Output

(desired gene regulation program) (registers)

GRSM database:

Search
function

Database creation flow diagram:

User-interface 
flow diagram:

= Terminator

= Promoter

Parts key

= Gene with 
bi-directional 
terminator

Fig. 5.The GRSM database. (Top) Flow diagram depicting how the database was created. (Middle) The database has a precompiled list of GRSM registers for
distinct gene regulation programs. State diagrams represent gene regulation programs, with each node containing stripes of different colors corresponding to
which genes are expressed in that state (no stripes implies no expression of any gene). (Bottom) A search function accepts a user-specified gene regulation
program and returns registers from the database capable of implementing it.
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Gene regulation 
program

GRSM state diagram Performance

ATc Ara

ATcAra

GFP

GFP OFF94

94

100

96 100

ATc Ara

ATcAra

99

99

95

98

96

ATc Ara

ATcAra

100

99

99

99

96

ATc Ara

ATcAra

100

98

98

100

96

Ara

ATc

ATc

Ara

RFP
BFP 
GFP+RFP
GFP+BFP
RFP+BFP
Other

99

99

98

98

96

= Terminator = PromoterParts key: = Gene with bi-directional terminator

Fig. 6. Implementing two-input, five-stateGRSMs. (A toE)We built GRSMs
(one for each panel) in E. coli to implement the gene regulation programs
depicted at the left, with each node containing stripes of different colors
corresponding to which gene products (green, GFP; red, RFP; blue, BFP) are
expressed in that state (no stripes implies no expression of any gene). The
corresponding GRSM state diagrams are depicted in the middle column, with
expressed (ON) fluorescent reporters represented by shaded genes and non-
expressed (OFF) fluorescent reporters represented by outlined genes. In the

right column, nodes represent populations of cells induced with all permuted
substrings of the inputs ATc (orange arrow) andAra (blue arrow).Cultureswere
treated with saturating concentrations of each input (ATc, 250 ng/ml; Ara, 1%
w/v) at 30°C for 24 hours in three biological replicates.The nodes are shaded
according to the percent of cells with different gene expression profiles (ON/
OFFcombinations of the fluorescent reporters) asmeasured by flowcytometry.
Node labels show the percentage of cells with the expected gene expression
profile (averaged over all three biological replicates).
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100

100
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100
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98

GFP

GFP OFF

Gene regulation program

GRSM state diagram

Performance

100

100

100 100

100 100

99

99

98

98

97

100

100

100

100

100

BFP

BFP OFF

Performance

GRSM state diagram

Gene regulation program

= Promoter

Parts key:

= Gene with 
   bi-directional
   terminator

Fig. 7. Implementing three-input, 16-stateGRSMs. (A andB)We built GRSMs
in E. coli to implement the gene regulation programs depicted at the lower left
of each panel, with each node containing stripes of different colors corre-
sponding to which gene products (blue, BFP; green,GFP) are expressed in that
state (no stripes implies no expression of any gene).The corresponding GRSM
state diagrams are depicted at the top of each panel, with expressed (ON)
fluorescent reporters represented by shaded genes and non-expressed (OFF)
fluorescent reporters represented by outlined genes. At the lower right of each

panel, nodes represent populations of cells induced with all permuted sub-
strings of the inputs ATc (orange arrow), Ara (blue arrow), and DAPG (purple
arrow). Cultures were treated with saturating concentrations of each input
(ATc, 250 ng/ml; Ara, 1% w/v; DAPG, 25 mM) at 30°C for 24 hours in three
biological replicates.The nodes are shaded according to the percentage of cells
with or without gene expression as measured by flow cytometry. Node labels
show the percentage of cells with the expected gene expression profile (aver-
aged over all three biological replicates).
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Because unpredictable behaviors can result
when gene regulatory parts are assembled into
specific arrangements, certain GRSMs may not
implement gene regulation programs as expected.
Indeed, this was the case when we initially tested
a GRSM that was expected to express green flu-
orescent protein (GFP) after being exposed to
one of two inputs, Ara only or ATc → Ara (fig.
S10A) (32). Rather than debugging, we constructed
two alternative GRSMs using different registers
from our database (fig. S10, B and C) that per-
formed better than the initial GRSM, one of which
had at least 95% of cells with the expected gene
expression profile for each experimental popu-
lation (fig. S10C). In general, many gene regu-
lation programs represented in our database
have multiple possible registers that can imple-
ment them (fig. S11). For example, most single-
gene regulation programs have at least 373 possible
registers, most two-gene regulation programs
have at least 55 possible registers, and most
three-gene regulation programs have at least
14 possible registers. Even for programs in the
database that regulate up to 14 genes, most have
at least four possible registers that can imple-
ment them. This highly degenerate design space
offers a range of GRSM registers that can act as
alternatives for one another in the event that a
particular register fails to perform to a certain
standard. Additional computationally and exper-
imentally derived rules might enable ranking of
candidate registers for their likelihood of suc-
cessful gene regulation function.
To demonstrate the scalability of GRSMs, we

built two different three-input, 16-state GRSMs
by interleaving genetic parts into the register
from Fig. 4A. One GRSM functions as a three-
input passcode switch that turns on the expres-
sion of a gene (encoding blue fluorescent protein)
only when it receives the input Ara → DAPG →
ATc (Fig. 7A). The other GRSM expresses a gene
(encoding GFP) by default and turns it off if it
receives any input that is not along the Ara →
DAPG → ATc trajectory (Fig. 7B). Both GRSMs
were implemented in E. coli and tested with all 16
permuted substrings of the inputs ATc, Ara, and
DAPG (32). Flow cytometry revealed that at least
93% of cells from each experimental population
adopted the expected gene expression profile.
Thus, scalable GRSMs that function efficiently
can be implemented using our design framework.

Discussion

We created state machines by using recombi-
nases to manipulate DNA registers assembled
from overlapping and orthogonal recombinase
recognition sites. We used a mathematical frame-
work to analyze the information capacity and
scalability of our state machines and understand
their limits. For a fixed number of inputs, the
information capacity enabled by RSMs is much
greater than that of traditional combinational
circuits. Furthermore, we created a rich database
accessible to the scientific community (database
S1 and appendix S1) to enable the automatic de-
sign of GRSM registers that implement two-
input, five-state gene regulation programs.

We validated our RSM framework by building
two-input, five-state and three-input, 16-stateRSMs,
testing them with Sanger sequencing and qPCR,
and applying them to build state-dependent gene
regulation programs. Our state machines differ
from other strategies for genetic programming,
such as combinational Boolean logic gates that
are stateless (33–44), cell counters that do not
integrate multiple inputs (20), temporal logic
circuits that are unable to report on all possible
input identities and permutations in a single
circuit (23), and other multi-input recombinase-
based circuits that do not use overlapping re-
combinase recognition sites and thus cannot
perform order-dependent input processing (21, 22).
Although we implemented RSMs in bacteria,

we anticipate that our framework will be exten-
sible to other organisms in which recombinases
are functional. For example, the large serine re-
combinases used here (BxbI, TP901, andA118), as
well as fC31, fFC1, fRV1, U153, and R4, catalyze
recombination in mammalian cells (45–48). Iden-
tification of additional recombinases that func-
tion in different organisms should expand the
applicability of our framework. The incorpora-
tion of reversible recombination events through
proteins such as recombination directionality
factors could also enable reversible transitions
between gene regulatory states (15). Depending
ondesired applications, the prototypical inducible
promoters we used here to drive the RSMs could
be replaced by sensors that correspond to the
desired signals to be recorded. Such sensors need
not be based on transcriptional regulation, as long
as they can control recombinase activity.
The integration of RSMs into complex systems

should enable researchers to investigate tempo-
rally distributed events without the need for con-
tinual monitoring and/or sampling. For example,
by incorporating RSMs into tumor models, sci-
entists may record the identity and order of on-
cogene activation and tumor suppressor deactivation
events in individual cancer cells, and further cor-
relate this information to phenotypic data from
transcriptomic analysis or drug assays. In a recent
study of myeloproliferative neoplasms containing
mutations in both TET2 (a tumor suppressor) and
JAK2 (a proto-oncogene), it was discovered that
the order in which themutations occurred played
a role in determining disease phenotype, includ-
ing sensitivity to therapy (8). This research under-
scores the potential impact of order dependencies
in othermalignancies and the importance of study-
ing them. Cell sorting based on reporter gene
expression from GRSMs could be used to sep-
arate cells exposed to different identities and
orders of gene regulatory perturbations, which
could then be further studied to determine func-
tional cellular differences.
Aside from recording and responding to nat-

urally occurring signals, RSMs have potential
applications when the signals that control them
are applied by a user. For example, RSMs can
generate gene expression based not only on sim-
ultaneous combinations of inputs, but also on
orders of inputs. Thus, they may be useful to
bioengineers for programming multiple func-

tions in cell strains for which there are limited
numbers of control signals. For example, they
could be used to program cell differentiation
down many different cell fate paths based on
the order and identities of just a few inputs.
Beyond applications in biological research and

engineering, our work has also revealed an in-
terestingmathematical structure to recombinase
systems. At first glance, the noncommutative be-
havior of recombinase operations suggests that
there might be a superexponential relationship
between the number of possible states in a RSM
and the number of recombinases it incorporates.
Instead, our results show that the number of
states is bound exponentially given a finite num-
ber of attB-attP pairs per recombinase (Box 1 and
texts S2 and S3). Many open mathematical prob-
lems remain. For example, what is the minimum
number of recognition sites on a register needed
to implement a particular state machine? Given a
gene regulation program of arbitrary scale and
complexity, how can we decide whether there
exists a corresponding GRSM? We anticipate
that solving such problems will be of interest to
mathematicians and biologists alike.

Materials and methods
Strains, media, antibiotics, and inducers

All plasmids were implemented and tested in
E. coli strainDH5aPRO[F-F80lacZDM15D(lacZYA-
argF)U169deoR recA1 endA1hsdR17(rk−,mk+)phoA
supE44 thi-1 gyrA96 relA1 l−, PN25/tet

R, Placiq/lacI,
Spr]. All experiments were performed in Azure
Hi-Def medium (Teknova, Hollister, CA) sup-
plemented with 0.4% glycerol. For cloning, we
used E. coli strains DH5aPRO or EPI300 [F-mcrA
D(mrr-hsdRMS-mcrBC)F80lacZM15DlacX74 recA1
endA1 araD139 D(ara, leu)7697 galU galK l− rpsL
(StrR) nupG trfA dhfr], as indicated below. All
cloning was done in Luria-Bertani (LB)–Miller
medium (BD Difco) or Azure Hi-Def medium,
as indicated below. LB plates were made by
mixing LB with agar (1.5% w/v; Apex). For both
cloning and experiments, the antibiotics used
were chloramphenicol (25 mg/ml) and kanamy-
cin (30 mg/ml). For experiments, the inducers
used were ATc (250 ng/ml), Ara (1% w/v), and
DAPG (25 mM).

Plasmid construction and cloning

All plasmids were constructed using basicmolec-
ular cloning techniques and Gibson assembly
(49, 50). Figure S12 shows all plasmids and their
relevant parts. Tables S3 and S4 give a list of rel-
evant parts, their sequences, and the sources
from which they were derived.
All input plasmids (pNR64 and pNR220) have

a kanamycin resistance cassette (kanR) and a
ColE1 (high copy) origin of replication. The input
plasmid pNR64 was adapted from the dual re-
combinase controller from (22) (Addgene #44456).
We replaced the chloramphenicol resistance cas-
sette in this dual recombinase controller with
kanR to make pNR64. To make pNR220, we
inserted the PhlF promoter system from (36)
onto pNR64 to drive the expression of the A118
recombinase, a gift from J. Thomson (USDA-ARS
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WRRC, Albany, CA). To control A118 tightly in
the absence of any input, we expressed the phlF
gene (responsible for suppressing transcription
from PPhlF) from the strong constitutive proD
promoter (51). All input plasmidswere transformed
into chemically competent E. coli strain DH5aPRO,
and subsequently isolated using the Qiagen
QIAprep Spin Miniprep Kit and verified with
Sanger sequencing (Quintara Biosciences).
All output plasmids (pNR160, pNR163, pNR164,

pNR165, pNR166, pNR186, pNR187, pNR188,
pNR291, pNR292, and pNR284) have a chloram-
phenicol resistance cassette (camR) and are built
on a bacterial artificial chromosome (BAC) vector
backbone to ensure low copy number, as we ideal-
ly want ~1 register per cell. The BAC we used is
derived from (52) and is capable of being induced
to a higher copy number with Copy Control
(Epicentre) in EPI300 cells. Strings of attB and
attP recognition sites for pNR160 and pNR188
were synthesized from Integrated DNA Technol-
ogies and cloned into their respective backbones.
For the construction of all GRSMoutput plasmids
(pNR163, pNR164, pNR165, pNR166, pNR186,
pNR187, pNR291, pNR292, and pNR284), we in-
terleaved the array of recognition sites on pNR160
(for two-input, five-state) and pNR188 (for three-
input, 16-state) with promoters, terminators, and
genes using Gibson assembly. In order to prevent
unwanted recombination on our plasmids, we
avoided reusing identical part sequences on the
same plasmid. For promoters, we used proD,
BBa_R0051, and BBa_J54200, which have all
been previously characterized to have strong ex-
pression (53). The proD promoter is an insulated
promoter, which helps with consistent perform-
ance across varying contexts (51). We fused the
two promoters, BBa_R0051 and BBa_J54200, up-
streamof20-nucleotide initial transcribed sequences
(ATATAGTGAACAAGGATTAA and ATAGGTTA-
AAAGCCAGACAT, respectively) characterized in
(54), and named the concatenated parts proNR3
and proNR4, respectively. We chose terminators
for our GRSMs from among the set of validated
strong and sequence diverse terminators charac-
terized in (55). We often constructed terminators
in tandemto increase termination efficiency. Lastly,
we used the fluorescent reporter genes gfpmut3b
(56), mrfp (57), and mtagbfp (58) to produce out-
puts. The ribosomebinding site (RBS) of each gene
was optimized using the Salis Lab RBS calculator
(59).Upstreamof eachRBS,we fuseda self-cleaving
hammerhead ribozyme to prevent the upstream 5′
untranslated transcript region from interferingwith
translation of the downstream gene (60). All out-
put plasmids were transformed into chemically
competent E. coli strain EPI300 or DH5aPRO, and
subsequently isolated using the Qiagen QIAprep
Spin Miniprep Kit and verified with Sanger se-
quencing (Quintara Biosciences).
Like the output plasmids, all plasmids to test

the forward (attB-attP → attL-attR) and reverse
(attL-attR→ attB-attP) recombination efficiencies
for each recombinase used in this study (see fig. S1)
have camR and are built on a BAC. The forward
reaction test plasmids (pNR230 for BxbI, pNR239
for A118, and pNR276 for TP901) were each

constructed with a reverse-oriented gfpmut3b
(attached to the same RBS and ribozyme as on
the output plasmids described above) down-
stream of a forward-oriented proD promoter,
and with anti-aligned attB and attP sites for the
cognate recombinase flanking the gene. Each
forward reaction test plasmid was transformed
into chemically competentE. coli strainDH5aPRO,
and subsequently isolated using the QiagenQIAprep
Spin Miniprep Kit and verified with Sanger se-
quencing (Quintara Biosciences). To generate the
reverse reaction test plasmids (pNR279 for BxbI,
pNR280 for A118, and pNR287 for TP901), we trans-
formed each forward reaction test plasmid into
chemically competent E. coli strain DH5aPRO
containing the pNR220 input plasmid, induced
the cognate recombinase for each test plasmid,
and isolated the recombined plasmid from cells
using the Qiagen QIAprep Spin Miniprep Kit.
Each reverse reaction test plasmid was then trans-
formed into chemically competent E. coli strain
DH5aPRO, and subsequently isolated again using
the Qiagen QIAprep Spin Miniprep Kit and veri-
fied with Sanger sequencing (Quintara Biosci-
ences). The second transformation and isolation
step for these test plasmids was done to separate
them from the pNR220 plasmid, which inevita-
bly was present in the purified DNA solution
after the first isolation step.

RSM implementation

All RSMs were implemented with a two-plasmid
system (an input plasmid and an output plasmid).
Table S5 shows each RSM and the names of the
input and output plasmids used to implement
them. All two-input RSMs used the pNR64 input
plasmid with various output plasmids depending
on the desired gene regulation program. All three-
input RSMs used the pNR220 input plasmid with
various output plasmids depending on the desired
gene regulation program.
For the two-input, five-state RSMs, the input

plasmid (pNR64) and the output plasmid were
simultaneously transformed into chemically com-
petent E. coli DH5aPRO cells. Post-transformation,
the cells were plated on LB plates with chloram-
phenicol and kanamycin. Colonies from these
plates were used to initiate RSM testing exper-
iments (see below).
For the three-input, 16-state RSMs, we first

transformed the input plasmid (pNR220) into
chemically competent E. coli DH5aPRO cells
and plated the transformants onto LB plates
with kanamycin. Subsequently, we inoculated
a colony in Azure Hi-Def medium (with kana-
mycin) and grew it overnight at 37°C, then diluted
it 1:2000 into fresh medium (same as the over-
night) and let it regrow at 37°C to anOD600 of 0.2
to 0.5. The cells from this culturewere thenmade
chemically competent and transformed with the
output plasmid. The purpose for the sequential
transformation in this case was to allow time for
the phlF gene (on the input plasmid) to be ex-
pressed at a high enough level to suppress ex-
pression of the A118 recombinase from the PPhlF
promoter (also on the input plasmid). This was
to ensure minimal recombinase levels when the

output plasmid was introduced into the system;
otherwise the register on the output plasmid could
have falsely recorded a chemical induction event
prior to its actual occurrence. After transforma-
tion of the output plasmid, the cells were plated
on an LB plate with chloramphenicol and kana-
mycin. Colonies from these plates were used to
initiate RSM testing experiments (see below).

Experiment for testing the two-input,
five-state RSM from Fig. 3A

To test the two-input, five-state RSM for one
biological replicate, a colony of E. coli cells con-
taining input plasmid pNR64 and output plas-
mid pNR160 was inoculated into medium with
kanamycin and chloramphenicol, grown overnight
(~18 hours) at 37°C, and subjected to two rounds of
induction followed by a round of outgrowth. For
the first round of induction, the overnight culture
was diluted 1:250 into medium with no inducer,
medium with ATc, and medium with Ara, and
grown at 30°C for 18 hours. For the second round
of induction, these three cultures were then di-
luted again 1:250 into fresh medium; the non-
induced culture was diluted into medium with
no inducer again, the ATc-induced culture was di-
luted into medium with no inducer and medium
with Ara, and the Ara-induced culture was diluted
into medium with no inducer and medium with
ATc. These cultures were again grown at 30°C
for 18 hours. The resulting cultures represented
five populations of cells treated with all five per-
muted substrings of the inputs ATc and Ara.
Lastly, for the outgrowth, these cultures were
diluted 1:250 into medium with no inducer and
grown at 37°C for ~18 hours. The purpose of
this final outgrowth was to allow all cell pop-
ulations to normalize to conditions without in-
ducer, such that detected differences between
populations could be attributed to their history
of inputs rather than their current environment.
This experiment was repeated with a different
starting colony for each biological replicate. All
cultures were grown in 250 ml of medium (in 96-
well plates) shakenat 900 rpm.Allmedia contained
chloramphenicol and kanamycin. Final popula-
tions from the experiment were analyzed with
sequencing assays and qPCR assays (see below).

Sequencing assay for testing the
two-input, five-state RSM from Fig. 3A

For the sequencing assay, each of the five exper-
imental populations described above (from each
of three biological replicates) were diluted 1:106,
plated (100 ml) onto LB plates with chloramphen-
icol and kanamycin, and grown overnight at 37°C
such that each resulting colony represented the
clonal population of a single cell from each ex-
perimental population. The register region on
the output plasmid for around 24 (at least 22)
colonies from each plate (experimental popula-
tion) was amplified with colony PCR and sent for
Sanger sequencing (Quintara Biosciences). Chro-
matograms from the sequencing reactions were
aligned to the expected register sequence to
determine whether they matched. Results from
all three replicates were totaled, and the percent
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of cells matching their expected sequence is
displayed in Fig. 3B.

qPCR assay for testing the two-input,
five-state RSM from Fig. 3A

For the qPCR assay, plasmids from each of the five
experimental populations described above (from
each of three biological replicates) were isolated
with the QIAprep Spin Miniprep Kit and used as
template in qPCR reactions. All qPCR reactions
were performed on the Roche LightCycler 96 Real-
Time System using KAPA SYBRFASTMasterMix
and according to Kapa Biosystems’ recommended
protocol (200 nM each primer, 10 ml of 2× master
mix, and no more than 20 ng of template in a
20-ml reaction). Each templatewas qPCR-amplified
with each of three primer pairs (pp1, pp2, and pp3)
elucidated by PSIT (described below; see appendix
S2 for the program), as well as a normalizing
primer pair (ppN) that amplified the backbone of
the output plasmid. Figure S13 shows the regions
on the register towhich the threePSITprimer pairs
bind and the register states that they are supposed
to amplify. Table S6 gives the primer sequences.
Alongwith the experimental templates, we also ran
qPCR reactions of each primer pair with control
template made up entirely of output plasmid con-
taining register state S3 (fig. S13) that would get
amplified by each primer pair. We isolated this
output plasmid from our Ara-treated E. coli pop-
ulation and sequence-verified it to make sure
that the register state matched S3. We calculated
the “fractional amount” of output plasmid am-
plified by each primer pair (pp1, pp2, or pp3) for
each experimental template (t1, t2, t3, t4, or t5) as

ftx;ppy ¼ 2ðCqtx; ppn−Cqtc; ppnÞ−ðCqtx; ppy−Cqtc; ppyÞ

where tx is the experimental template of interest
(t1, t2, t3, t4, or t5), ppy is the primer pair of in-
terest (pp1, pp2, or pp3), tc is the control template
(output plasmid in S3), ppn is the normalizing
primer pair (ppN), andCq is the Cq value from the
qPCR reaction of the template and primer pair
indicated in its subscript.
From these ftx, ppy values, we created a qPCR

result vector for each experimental template, ftx:

f tx ¼ ½ ftx; pp1; ftx; pp2; ftx; pp3�
This result vector was compared to the theoretical
result vector that we would get if the template
were made up entirely of a register from one
particular state in our RSM, fts:

f ts ¼ ½ fts; pp1; fts; pp2; fts; pp3�
where ts is the template made entirely of register
from one state (S1, S2, S3, S4, or S5). The fts, ppy
values are 0 or 1 depending on whether the par-
ticular primer pair ppy amplifies that state (fig.
S13). The similarity of ftx to fts was quantified by
Euclidean distance, Dtx, ts:

Dtx; ts ¼ jf tx − f tsj

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ftx; pp1 − fts; pp1Þ2 þ ð ftx; pp2 − fts; pp2Þ2 þ ð ftx; pp3 − fts; pp3Þ2

q

The Euclidean distances between the qPCR result
vectors of each experimentally derived template

and the theoretical qPCR result vectors of each
state are displayed in a heat map in fig. S4 for
each of three biological replicates.

Experiment for testing the three-input,
16-state RSM from Fig. 4A

To test the three-input, 16-state RSM for one
biological replicate, a colony of E. coli cells
containing input plasmid pNR220 and output
plasmid pNR188 was inoculated into medium
with kanamycin and chloramphenicol, grown
overnight (~18 hours) at 37°C, and subjected
to three rounds of induction followed by a round
of outgrowth. For the first round of induction,
the overnight culture was diluted 1:250 into me-
dium with no inducer, medium with ATc, me-
dium with Ara, and medium with DAPG, and
grown at 30°C for 24 hours. For the second
round of induction, these four cultures were
then diluted again 1:250 into fresh media: The
noninduced culture was diluted into medium
with no inducer; the ATc-induced culture was di-
luted intomediumwith no inducer,mediumwith
Ara, and medium with DAPG; the Ara-induced
culture was diluted intomediumwith no inducer,
medium with ATc, and medium with DAPG; and
theDAPG-inducedculturewasdiluted intomedium
with no inducer, medium with ATc, and medium
with Ara. These cultures were again grown at 30°C
for 24 hours. For the third round of induction, each
of these 10 cultures were diluted again 1:250 into
fresh media: The noninduced → noninduced,
ATc → noninduced, Ara → noninduced, and
DAPG→ noninduced cultures were diluted into
medium with no inducer; the ATc → Ara and
Ara → ATc cultures were diluted into medium
with no inducer and medium with DAPG; the
ATc → DAPG and DAPG → ATc cultures were
diluted intomediumwith no inducer andmedium
with Ara; and the Ara → DAPG and DAPG →
Ara cultures were diluted into medium with no
inducer and medium with ATc. These cultures
were again grown at 30°C for 24 hours. The re-
sulting cultures represented 16 populations of
cells treatedwith all 16 permuted substrings of the
inputs ATc, Ara, and DAPG. Lastly, for the out-
growth, these cultures were diluted 1:250 into
mediumwith no inducer and grown at 37°C for
18 hours. This experiment was repeated with a
different starting colony for each biological rep-
licate. All cultures were grown in 250 ml of me-
dium (in 96-well plates) shaken at 900 rpm. All
media contained chloramphenicol and kanamy-
cin. Final populations from the experiment were
analyzed with sequencing assays and qPCR as-
says (see below).

Sequencing assay for testing the
three-input, 16-state RSM from Fig. 4A

For the sequencing assay, each of the 16 exper-
imental populations described above (from each
of three biological replicates) were diluted 1:106,
plated (100 ml) onto LB plates with chloram-
phenicol and kanamycin, and grown overnight
at 37°C such that each resulting colony repre-
sented the clonal population of a single cell from
each experimental population. The register region

on the output plasmid for five or six colonies from
each plate (experimental population) was ampli-
fied with colony PCR and sent for Sanger se-
quencing (Quintara Biosciences). Chromatograms
from the sequencing reactions were aligned to the
expected register sequence to determine whether
they matched. Results from all three biological
replicates were totaled, and the percent of cells
matching their expected sequence is displayed in
Fig. 4B.

qPCR assay for testing the three-input,
16-state RSM from Fig. 4A

For the qPCR assay, plasmids from each of the
16 experimental populationsdescribedabove (from
each of three biological replicates) were isolated
with the Qiagen QIAprep Spin Miniprep Kit and
used as template in qPCR reactions. As with the
two-input, five-state RSM testing, all qPCR reac-
tions were performed on the Roche LightCycler
96 Real-Time System using KAPA SYBR FAST
Master Mix and according to the Kapa Biosys-
tems recommended protocol (200 nM each
primer, 10 ml of 2× master mix, and nomore than
20 ng of template in a 20-ml reaction). Each tem-
platewas qPCR-amplifiedwith each of six primer
pairs (pp1, pp2, pp3, pp4, pp5, and pp6) elucidated
by PSIT as well as a normalizing primer pair
(ppN) that amplified the backbone of the output
plasmid. Figure S14 shows the regions on the
register to which the six PSIT primer pairs bind
and the register states that they are supposed to
amplify. Table S7 gives the actual primer se-
quences. Similar to the two-input, five-state sys-
tem, we also ran qPCR reactions of each primer
pair with control template made up entirely of
output plasmid containing a register that would
get amplified by each primer pair. Unlike with
the two-input, five-state RSM, however, there was
no single register state that would get amplified
by each primer pair. So we ended up using an
output plasmid in state S2 as a control template
for pp1, pp4, and pp5 and an output plasmid in
state S8 as a control template for pp2, pp3, and
pp6 (fig. S14). The plasmid with register state S2
was isolated from our ATc-treated E. coli popula-
tion (and sequence-verified), and the plasmidwith
register state S8 was isolated from our Ara →
DAPG–treated E. coli population (and sequence-
verified).We proceededwith calculating the frac-
tional amount of plasmid amplified by each primer
pair for each experimental template, and then com-
paring the data for each template to each theoret-
ical state (withEuclideandistance) the sameway as
we did for the two-input, five-state RSM, except
generalized to six primerpairs and 16 states. That is,

f tx ¼ ½ ftx; pp1; ftx; pp2; :::; ftx; pp6�

f ts ¼ ½ fts;pp1; fts; pp2; :::; fts; pp6�

Dtx; ts ¼ jf tx − f tsj

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ftx; pp1 − fts; pp1Þ2 þ :::þ ð ftx; pp6 − fts; pp6Þ2

q

The Euclidean distances between the qPCR result
vectors of each experimentally derived template
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and the theoretical qPCRresult vectors of each state
are displayed in a heat map in fig. S6 for each of
three biological replicates.

Designing the GRSM registers from
Fig. 6 and fig. S10

We inputted our desired gene regulation pro-
grams into the database search function [coded
in MATLAB R2013b (Mathworks, Natick, MA);
appendix S1], and received an output list of reg-
isters, from which we chose our candidates for
implementation. Table S8 shows the MATLAB
search function input matrix we used to specify
our desired gene regulation programs, as well as
the search function output vectors that we chose
as our registers to implement the gene regulation
programs, as per the instructions on how to use
the search function (appendix S1).

Testing the GRSMs from Fig. 6 and fig. S10

The experiments to test the two-input, five-state
GRSMs followed the same format as the exper-
iment to test the two-input, five-state RSM from
Fig. 3A, except that we used 24-hour inductions
instead of 18-hour inductions for the induction
rounds, and instead of analyzing the experimen-
tal populations with sequencing and qPCR assays,
we used a fluorescence assay (see below).

Testing the GRSMs from Fig. 7

The experiments to test the three-input, 16-state
GRSMs followed the same format as the exper-
iment to test the three-input, 16-state RSM from
Fig. 4A, except that instead of analyzing the ex-
perimental populationswith sequencing andqPCR
assays, we used a fluorescence assay (see below).

Testing the reversibility of BxbI, TP901,
and A118 in fig. S1

For each recombinase in our study (BxbI, TP901,
and A118), we isolated two plasmids that were
recombined versions of each other: one with
attB-attP and no GFP expression (pNR230 for
BxbI, pNR239 for A118, and pNR276 for TP901),
and the other with attL-attR and GFP expression
(pNR279 for BxbI, pNR280 for A118, and pNR287
for TP901). We transformed each of these plas-
mids into chemically competent E. coliDH5aPRO
containing the input plasmid pNR220 (prepared
as described above). To measure recombination
for each transformant, a colony was inoculated
intomediawith kanamycin and chloramphenicol,
grown overnight (~18 hours) at 37°C, and sub-
jected to a round of induction followed by a round
of outgrowth. For the induction, the overnight
culture was diluted 1:250 into medium with no
inducer andmediumwith inducer (ATc for BxbI,
Ara for TP901, or DAPG for A118) and grown at
30°C for 16 hours. For the outgrowth, these
cultures were diluted 1:250 intomediumwith no
inducer and grown at 37°C for 18 hours. This
experiment was repeated with a different start-
ing colony for each of three biological replicates.
All cultures were grown in 250 ml of medium (in
96-well plates) shaken at 900 rpm.Wemeasured
the percentage of cells from each population ex-
pressing GFP, as described below.

RSM time course experiment in fig. S9
For one biological replicate, a colony of E. coli
DH5aPRO cells containing input plasmid pNR64
and output plasmid pNR291 was inoculated into
medium with kanamycin and chloramphenicol,
grown overnight (~18 hours) at 37°C, rediluted
1:75 into freshmedium, split into 11 cultures, and
grown at 30°C. When cells reached an OD600 of
0.1, we rediluted cells from one culture 1:125 into
fresh medium and let them outgrow at 37°C.
This (uninduced) population would become the
0-hour time point in fig. S9, C to E. All other
cultures were subjected to induction prior to
outgrowth. Ara was directly added to five of the
cultures, and ATc was directly added to the other
five and they were allowed to continue growing
at 30°C. Each of the five cultures for each input
would become induction time points separated
by 1-hour steps (for each input); we refer to them
as input seed cultures. After 1 hour, we diluted
cells from one ATc seed culture 1:125 into fresh
medium and let them outgrow at 37°C. This
would become the 1-hour time point for ATc in
fig. S9C. From the same seed culture, we also
diluted cells 1:25 into medium with Ara and let
them grow for the equivalent amount of input
exposure time (1 hour) at 30°C before diluting
1:125 into fresh medium and letting them
outgrow at 37°C. This would become the 1-hour
time point for ATc → Ara in fig. S9E. Then, for
the same seed culture, we directly added Ara and
let the cells grow for the equivalent amount of
input exposure time (1 hour) at 30°C before
diluting 1:125 into fresh medium and letting
them outgrow at 37°C. This would become the
1-hour time point for ATc→ Ara in fig. S9D. The
same procedurewas done for an Ara seed culture
after 1 hour, except with ATc as the sequentially
added input. This process was subsequently
repeated at 2 hours with different ATc and Ara
seed cultures, and so on for 3, 4, and 5 hours. The
outgrowth for all cell populations continued for
16 hours after the final cells were diluted for
outgrowth (10 hours after the initial induction
began). This experiment was repeated for three
biological replicates. All cultures were grown in
250 ml of medium (in 96-well plates) shaken at
900 rpm. All media contained chloramphenicol
and kanamycin. Final populations from the ex-
perimentwere analyzedwith flow cytometry (see
below).

Fluorescence assay

For all experiments with a fluorescence assay, we
diluted cells 1:125 into phosphate-buffered solu-
tion (PBS, Research Products International) and
ran them on a BD-FACS LSRFortessa-HTS cell
analyzer (BD Biosciences). We measured 30,000
cells for each sample and consistently gated by
forward scatter and side scatter for all cells in an
experiment. GFP (product of gfpmut3b) intensity
was measured on the FITC channel (488-nm
excitation laser, 530/30 detection filter), RFP (pro-
duct ofmrfp) intensity was measured on the PE–
Texas Red channel (561-nm excitation laser, 610/
20 detection filter), and BFP (product ofmtagbfp)
intensity was measured on the PacBlue channel

(405-nm excitation laser, 450/50 detection filter).
A fluorescence thresholdwas applied in each chan-
nel to determine the percent of cellswith expressed
(ON) versus not expressed (OFF) fluorescent pro-
teins. The threshold was based on a negative
control (E. coliDH5aPRO containing pNR64 and
a BAC with no fluorescent reporter genes) pop-
ulation, such that 0.1% of these negative control
cells were considered to have ON fluorescent
protein expression in each channel (corresponding
to a 0.1% false positive rate).
All fluorescence-based experiments had three

biological replicates. For the recombinase revers-
ibility experiment (fig. S1) and the RSM time
course experiment (fig. S9), the data for all three
replicates is shown. For the GRSM experiments
(Figs. 6 and 7 and fig. S10), the data from all three
replicates are averaged. For these experiments,
the largest standard error for the percent of any
fluorescent subpopulation was 1.22%.

GRSM database and search function

The GRSM database was constructed (as dis-
cussed in the main text) using MATLAB R2013b
(Mathworks), partly run on the Odyssey cluster
supportedby the FASDivision of Science, Research
Computing Group at Harvard University.
The database contains three arrays: registerArray

(an array of GRSM registers), grpArray (an array
of gene regulation programs), and register2grp (an
array that maps each register in registerArray
to its corresponding gene regulation program in
grpArray, by index).
Each gene regulation program in grpArray is

represented by a 70-element vector of 0s and 1s.
Each contiguous stretch of 14 elements belongs
to a state—S1, S2, S3, S4, and S5, respectively—
corresponding to the states in Fig. 3A. And with-
in each state, each element (1 to 14) represents a
gene (G1 to G14, respectively). For example, given
a vector in grpArray, element 1 represents G1 in S1,
element 15 represents G1 in S2, element 29 rep-
resent G1 in S3, element 43 represent G1 in S4,
element 57 representsG1 inS5, element 2 represents
G2 in S1, element 16 represents G2 in S2, and so on.
The binary value of each element indicates whether
that gene in that particular state is OFF (0) or ON
(1). If the value of any given gene in every state
in a gene regulation program is 0, then that
gene does not exist in the regulation program.
Each register in registerArray is represented

by a seven-element vector of numbers 1 through
25. Each element of the vector corresponds to a
DNA region (a to g) interleaving the recognition
sites of the register shown in Fig. 3A. The value of
each element (1 to 25) represents a part, as de-
fined in table S9. Each part is made up of genes,
terminators, and constitutive promoters, arranged
such that each part is functionally distinct (see text
S6). Nonpalindromic parts (as indicated in table
S9) can appear inverted on the register, in which
case they take on a negative value. For example,
part 1 is a gene, which is a nonpalindromic part. If
it appears as a “1” on an element of a register
vector, then it is facing left to right (5′ to 3′), and if
it appears as a “–1” on an element of a register
vector, then it is facing right to left (5′ to 3′).
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Note that all explicitly depicted terminators
in the parts (table S9) are unidirectional; thus,
transcription can move through them in the
reverse direction. However, the unidirectional
terminator in part 3 can be replaced by a bi-
directional terminator without changing the
function of the part. This is because placing
an additional terminator upstream of the pro-
moter in part 3 would only terminate transcrip-
tion that would subsequently be reinitiated in
the same direction. Also, the unidirectional
nature of part 7 is not always necessary to the
gene regulation program of the underlying reg-
ister. That is, sometimes part 7 (a unidirectional
terminator by itself) can be replaced by part 4
(a bidirectional terminator by itself) without af-
fecting the gene regulation implemented by
the underlying register. To make this distinction
clear to database users, we parsed all occurrences
of part 7 in the registerArray and replaced it with
a special identifier, part 15, if its unidirectional
nature is not important to the gene regulation
program of the underlying register. Therefore,
all occurrences of part 7 in registerArray now
represent parts that necessitate “terminator
read-through” (transcription through their uni-
directional terminators in the reverse direction)
for the gene regulation program of the under-
lying register. Likewise, because convergent
(face-to-face) promoters can destructively in-
terfere with each other (61), we made a special
distinction for parts with promoters that ne-
cessitate “promoter read-through” (transcription
through their promoters in the reverse direc-
tion; table S9). Because part 10 (a promoter by
itself), depending on its register context, can
sometimes necessitate read-through and some-
times not, we parsed all occurrences of part 10
in registerArray and replaced it with a special
identifier, part 14, if it does not necessitate read-
through for the gene regulation program of
the underlying register. Therefore, all occur-
rences of part 10 in registerArray now repre-
sent parts that necessitate promoter read-through
for the proper gene regulation program of the
underlying register.
All parts with genes in registerArray also have

bidirectional terminators on the 3′ ends of those
genes. These terminators are not explicitly de-
picted in table S9. Although the database has
otherwise been reduced to avoid superfluous
terminators, promoters, and genes, the implicit
terminators on the 3′ ends of genes may some-
times be superfluous. That is, they may not be
necessary for the proper gene regulation pro-
gram of the underlying register.
Lastly, the array register2grp has the same

number of elements as registerArray. It maps
each register in registerArray to a value that is the
index of its corresponding gene regulation program
in grpArray.
We present the database as aMATLABMAT-file

(database S1), where each array is stored in a
MATLAB variable. The search function for this
MAT-file database was also created in MATLAB
R2013b and requires MATLAB software to run.
Code for the MATLAB search function and more

information on how it works are included in
appendix S1.

PCR-based state interrogation tool (PSIT)

The PSIT algorithm uses an abstract data type—
the class DNARegister—to represent registers.
To determine what sets of primer pairs may be
used to uniquely detect an inputtedDNARegister
and all of its recombined states, the algorithm
(i) “recombines” the input register, generating
DNARegister instances for all states that result
from any permuted substring of inputs; (ii) gen-
erates a list of primer pairs made up of all pos-
sible primers that bind to each region between
recognition sites and on the terminal ends of the
recognition site arrays; (iii) narrows the list to
primer pairs that only amplify in any given
state when they are on adjacent regions; and
(iv) determines all subsets of this final list of
primer pairs that can be used to uniquely iden-
tify each possible state of the DNA register. This
final list of primer pair subsets is then returned
as output along with details regarding which
primer pairs amplify in which states. For qPCR
compatibility purposes, step iii ensures that every
amplicon is short and that every primer pair al-
ways yields the same amplicon when it amplifies
(regardless of state). The PSIT program was im-
plemented in Python 2.7. Code for the PSIT pro-
gram andmore information on how it works are
included in appendix S2.
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time and can be deployed in state-dependent gene expression programs.
combinations of two inputs. Such circuits can be used to record the states that the cell experienced over 
chromosomes. The integrases altered the DNA sequence of a plasmid to record all five possible
control the expression of integrases, or enzymes that insert or excise phage DNA into or out of bacterial 

 have taken a finite state machine approach toet al.from vending machines to neural circuits. Roquet 
depending on the starting conditions. They are used for a variety of devices and biological systems, 

Finite state machines are logic circuits with a predetermined sequence of actions that are triggered
Building a computing system in bacteria
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